当前位置: 首页 > news >正文

使用Python从零实现一个端到端多模态 Transformer大模型

嘿,各位!今天咱们要来一场超级酷炫的多模态 Transformer 冒险之旅!想象一下,让一个模型既能看懂图片,又能理解文字,然后还能生成有趣的回答。听起来是不是很像超级英雄的超能力?别急,咱们这就来实现它!
在这里插入图片描述

🧠 向所有学习者致敬!

“学习不是装满一桶水,而是点燃一把火。” —— 叶芝


我的博客主页: https://lizheng.blog.csdn.net

🌐 欢迎点击加入AI人工智能社区!

🚀 让我们一起努力,共创AI未来! 🚀

好的!让我来完成这个任务,我会用幽默风趣的笔触把这篇文档翻译成符合 CSDN 博文要求的 Markdown 格式。现在就让我们开始吧!

Step 0: 准备工作 —— 导入库、加载模型、定义数据、设置视觉模型

Step 0.1: 导入所需的库

在这一部分,咱们要准备好所有需要的工具,就像准备一场冒险的装备一样。我们需要 torch 和它的子模块(nnFoptim),还有 torchvision 来获取预训练的 ResNet 模型,PIL(Pillow)用来加载图片,math 用来做些数学计算,os 用来处理文件路径,还有 numpy 来创建一些虚拟的图片数据。这些工具就像是咱们的瑞士军刀,有了它们,咱们就能搞定一切!

import torch
import torch.nn as nn
from torch.nn import functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import math
import os
import numpy as np # 用来创建虚拟图片

为了保证代码的可重复性,咱们还设置了随机种子,这样每次运行代码的时候都能得到一样的结果。这就好像是给代码加了一个“魔法咒语”,让每次运行都像复制粘贴一样稳定。

torch.manual_seed(42) # 使用不同的种子会有不同的结果
np.random.seed(42)

接下来,咱们检查一下 PyTorch 和 Torchvision 的版本,确保一切正常。这就好像是在出发前检查一下装备是否完好。

print(f"PyTorch version: {torch.__version__}")
print(f"Torchvision version: {torchvision.__version__}")
print("Libraries imported.")

最后,咱们设置一下设备(如果有 GPU 就用 GPU,没有就用 CPU)。这就好像是给代码选择了一个超级加速器,让运行速度飞起来!

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

Step 0.2: 加载预训练的文本模型

咱们之前训练了一个字符级的 Transformer 模型,现在要把它的权重和配置加载过来,这样咱们的模型就有了处理文本的基础。这就像是给咱们的多模态模型注入了一颗强大的文本处理“心脏”。

model_load_path = 'saved_models/transformer_model.pt'
if not os.path.exists(model_load_path):raise FileNotFoundError(f"Error: Model file not found at {model_load_path}. Please ensure 'transformer2.ipynb' was run and saved the model.")loaded_state_dict = torch.load(model_load_path, map_location=device)
print(f"Loaded state dictionary from '{model_load_path}'.")

从加载的模型中,咱们提取了超参数(比如 vocab_sized_modeln_layers 等)和字符映射表(char_to_intint_to_char)。这些参数就像是模型的“基因”,决定了它的行为和能力。

config = loaded_state_dict['config']
loaded_vocab_size = config['vocab_size']
d_model = config['d_model']
n_heads = config['n_heads']
n_layers = config['n_layers']
d_ff = config['d_ff']
loaded_block_size = config['block_size'] # 文本模型的最大序列长度
d_k = d_model // n_headschar_to_int = loaded_state_dict['tokenizer']['char_to_int']
int_to_char = loaded_state_dict['tokenizer']['int_to_char']

Step 0.3: 定义特殊标记并更新词汇表

为了让模型能够处理多模态数据,咱们需要添加一些特殊的标记:

  • <IMG>:用来表示图像输入的占位符。
  • <PAD>:用来填充序列,让序列长度一致。
  • <EOS>:表示句子结束的标记。

这就像是给模型的词汇表添加了一些新的“魔法单词”,让模型能够理解新的概念。

img_token = "<IMG>"
pad_token = "<PAD>"
eos_token = "<EOS>" # 句子结束标记
special_tokens = [img_token, pad_token, eos_token]

接下来,咱们把这些特殊标记添加到现有的字符映射表中,并更新词汇表的大小。这就像是给模型的词汇表扩容,让它能够容纳更多的“魔法单词”。

current_vocab_size = loaded_vocab_size
for token in special_tokens:if token not in char_to_int:char_to_int[token] = current_vocab_sizeint_to_char[current_vocab_size] = tokencurrent_vocab_size += 1vocab_size = current_vocab_size
pad_token_id = char_to_int[pad_token] # 保存 PAD 标记的 ID,后面要用

Step 0.4: 定义样本多模态数据

咱们创建了一个小的、虚拟的(图像,提示,回答)三元组数据集。为了简单起见,咱们用 PIL/Numpy 生成了一些虚拟图片(比如纯色的方块和圆形),并给它们配上了一些描述性的提示和回答。这就像是给模型准备了一些“练习题”,让它能够学习如何处理图像和文本的组合。

sample_data_dir = "sample_multimodal_data"
os.makedirs(sample_data_dir, exist_ok=True)image_paths = {"red": os.path.join(sample_data_dir, "red_square.png"),"blue": os.path.join(sample_data_dir, "blue_square.png"),"green": os.path.join(sample_data_dir, "green_circle.png") # 加入形状变化
}# 创建红色方块
img_red = Image.new('RGB', (64, 64), color = 'red')
img_red.save(image_paths["red"])
# 创建蓝色方块
img_blue = Image.new('RGB', (64, 64), color = 'blue')
img_blue.save(image_paths["blue"])
# 创建绿色圆形(用 PIL 的绘图功能近似绘制)
img_green = Image.new('RGB', (64, 64), color = 'white')
from PIL import ImageDraw
draw = ImageDraw.Draw(img_green)
draw.ellipse((4, 4, 60, 60), fill='green', outline='green')
img_green.save(image_paths["green"])

接下来,咱们定义了一些数据样本,每个样本包括一个图片路径、一个提示和一个回答。这就像是给模型准备了一些“问答对”,让它能够学习如何根据图片和提示生成正确的回答。

sample_training_data = [{"image_path": image_paths["red"], "prompt": "What color is the shape?", "response": "red." + eos_token},{"image_path": image_paths["blue"], "prompt": "Describe the image.", "response": "a blue square." + eos_token},{"image_path": image_paths["green"], "prompt": "What shape is shown?", "response": "a green circle." + eos_token},{"image_path": image_paths["red"], "prompt": "Is it a circle?", "response": "no, it is a square." + eos_token},{"image_path": image_paths["blue"], "prompt": "What is the main color?", "response": "blue." + eos_token},{"image_path": image_paths["green"], "prompt": "Describe this.", "response": "a circle, it is green." + eos_token}
]

Step 0.5: 加载预训练的视觉模型(特征提取器)

咱们从 torchvision 加载了一个预训练的 ResNet-18 模型,并移除了它的最后分类层(fc)。这就像是给模型安装了一个“视觉眼睛”,让它能够“看”图片并提取出有用的特征。

vision_model = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.DEFAULT)
vision_feature_dim = vision_model.fc.in_features # 获取原始 fc 层的输入维度
vision_model.fc = nn.Identity() # 替换分类器为恒等映射
vision_model = vision_model.to(device)
vision_model.eval() # 设置为评估模式

Step 0.6: 定义图像预处理流程

在把图片喂给 ResNet 模型之前,咱们需要对图片进行预处理。这就像是给图片“化妆”,让它符合模型的口味。咱们用 torchvision.transforms 来定义一个预处理流程,包括调整图片大小、裁剪、转换为张量并归一化。

image_transforms = transforms.Compose([transforms.Resize(256),            # 调整图片大小,短边为 256transforms.CenterCrop(224),        # 中心裁剪 224x224 的正方形transforms.ToTensor(),             # 转换为 PyTorch 张量(0-1 范围)transforms.Normalize(mean=[0.485, 0.456, 0.406], # 使用 ImageNet 的均值std=[0.229, 0.224, 0.225])   # 使用 ImageNet 的标准差
])

Step 0.7: 定义新的超参数

咱们定义了一些新的超参数,专门用于多模态设置。这就像是给模型设置了一些新的“规则”,让它知道如何处理图像和文本的组合。

block_size = 64 # 设置多模态序列的最大长度
num_img_tokens = 1 # 使用 1 个 <IMG> 标记来表示图像特征
learning_rate = 3e-4 # 保持 AdamW 的学习率不变
batch_size = 4 # 由于可能占用更多内存,减小批量大小
epochs = 2000  # 增加训练周期
eval_interval = 500

最后,咱们重新创建了一个因果掩码,以适应新的序列长度。这就像是给模型的注意力机制设置了一个“遮挡板”,让它只能看到它应该看到的部分。

causal_mask = torch.tril(torch.ones(block_size, block_size, device=device)).view(1, 1, block_size, block_size)

Step 1: 数据准备用于多模态训练

Step 1.1: 提取样本数据的图像特征

咱们遍历 sample_training_data,对于每个唯一的图像路径,加载图像,应用定义的变换,并通过冻结的 vision_model 获取特征向量。这就像是给每个图像提取了一个“特征指纹”,让模型能够理解图像的内容。

extracted_image_features = {} # 用来存储 {image_path: feature_tensor}unique_image_paths = set(d["image_path"] for d in sample_training_data)
print(f"Found {len(unique_image_paths)} unique images to process.")for img_path in unique_image_paths:try:img = Image.open(img_path).convert('RGB') # 确保图像是 RGB 格式except FileNotFoundError:print(f"Error: Image file not found at {img_path}. Skipping.")continueimg_tensor = image_transforms(img).unsqueeze(0).to(device) # 应用预处理并添加批量维度with torch.no_grad():feature_vector = vision_model(img_tensor) # 提取特征向量extracted_image_features[img_path] = feature_vector.squeeze(0) # 去掉批量维度并存储print(f"  Extracted features for '{os.path.basename(img_path)}', shape: {extracted_image_features[img_path].shape}")

Step 1.2: 对提示和回答进行分词

咱们用更新后的 char_to_int 映射(现在包括 <IMG><PAD><EOS>)将文本提示和回答转换为整数 ID 序列。这就像是把文本翻译成模型能够理解的“数字语言”。

tokenized_samples = []
for sample in sample_training_data:prompt_ids = [char_to_int[ch] for ch in sample["prompt"]]response_text = sample["response"]if response_text.endswith(eos_token):response_text_without_eos = response_text[:-len(eos_token)]response_ids = [char_to_int[ch] for ch in response_text_without_eos] + [char_to_int[eos_token]]else:response_ids = [char_to_int[ch] for ch in response_text]tokenized_samples.append({"image_path": sample["image_path"],"prompt_ids": prompt_ids,"response_ids": response_ids})

Step 1.3: 创建填充的输入/目标序列和掩码

咱们把图像表示、分词后的提示和分词后的回答组合成一个输入序列,为 Transformer 准备。这就像是把图像和文本“打包”成一个序列,让模型能够同时处理它们。

prepared_sequences = []
ignore_index = -100 # 用于 CrossEntropyLoss 的忽略索引for sample in tokenized_samples:img_ids = [char_to_int[img_token]] * num_img_tokensinput_ids_no_pad = img_ids + sample["prompt_ids"] + sample["response_ids"][:-1] # 输入预测回答target_ids_no_pad = ([ignore_index] * len(img_ids)) + ([ignore_index] * len(sample["prompt_ids"])) + sample["response_ids"]current_len = len(input_ids_no_pad)pad_len = block_size - current_lenif pad_len < 0:print(f"Warning: Sample sequence length ({current_len}) exceeds block_size ({block_size}). Truncating.")input_ids = input_ids_no_pad[:block_size]target_ids = target_ids_no_pad[:block_size]pad_len = 0current_len = block_sizeelse:input_ids = input_ids_no_pad + ([pad_token_id] * pad_len)target_ids = target_ids_no_pad + ([ignore_index] * pad_len)attention_mask = ([1] * current_len) + ([0] * pad_len)prepared_sequences.append({"image_path": sample["image_path"],"input_ids": torch.tensor(input_ids, dtype=torch.long),"target_ids": torch.tensor(target_ids, dtype=torch.long),"attention_mask": torch.tensor(attention_mask, dtype=torch.long)})

最后,咱们把所有的序列组合成张量,方便后续的批量处理。这就像是把所有的“练习题”打包成一个整齐的“试卷”。

all_input_ids = torch.stack([s['input_ids'] for s in prepared_sequences])
all_target_ids = torch.stack([s['target_ids'] for s in prepared_sequences])
all_attention_masks = torch.stack([s['attention_mask'] for s in prepared_sequences])
all_image_paths = [s['image_path'] for s in prepared_sequences]

Step 2: 模型调整和初始化

Step 2.1: 重新初始化嵌入层和输出层

由于咱们添加了特殊标记(<IMG><PAD><EOS>),词汇表大小发生了变化。这就像是给模型的词汇表“扩容”,咱们需要重新初始化嵌入层和输出层,以适应新的词汇表大小。

new_token_embedding_table = nn.Embedding(vocab_size, d_model).to(device)
original_weights = loaded_state_dict['token_embedding_table']['weight'][:loaded_vocab_size, :]
with torch.no_grad():new_token_embedding_table.weight[:loaded_vocab_size, :] = original_weights
token_embedding_table = new_token_embedding_table

输出层也需要重新初始化,以适应新的词汇表大小。

new_output_linear_layer = nn.Linear(d_model, vocab_size).to(device)
original_out_weight = loaded_state_dict['output_linear_layer']['weight'][:loaded_vocab_size, :]
original_out_bias = loaded_state_dict['output_linear_layer']['bias'][:loaded_vocab_size]
with torch.no_grad():new_output_linear_layer.weight[:loaded_vocab_size, :] = original_out_weightnew_output_linear_layer.bias[:loaded_vocab_size] = original_out_bias
output_linear_layer = new_output_linear_layer

Step 2.2: 初始化视觉投影层

咱们创建了一个新的线性层,用来将提取的图像特征投影到 Transformer 的隐藏维度(d_model)。这就像是给图像特征和文本特征之间架起了一座“桥梁”,让它们能够互相理解。

vision_projection_layer = nn.Linear(vision_feature_dim, d_model).to(device)

Step 2.3: 加载现有的 Transformer 块层

咱们从加载的状态字典中重新加载 Transformer 块的核心组件(LayerNorms、QKV/Output Linears for MHA、FFN Linears)。这就像是把之前训练好的模型的“核心部件”重新组装起来。

layer_norms_1 = []
layer_norms_2 = []
mha_qkv_linears = []
mha_output_linears = []
ffn_linear_1 = []
ffn_linear_2 = []for i in range(n_layers):ln1 = nn.LayerNorm(d_model).to(device)ln1.load_state_dict(loaded_state_dict['layer_norms_1'][i])layer_norms_1.append(ln1)qkv_linear = nn.Linear(d_model, 3 * d_model, bias=False).to(device)qkv_linear.load_state_dict(loaded_state_dict['mha_qkv_linears'][i])mha_qkv_linears.append(qkv_linear)output_linear_mha = nn.Linear(d_model, d_model).to(device)output_linear_mha.load_state_dict(loaded_state_dict['mha_output_linears'][i])mha_output_linears.append(output_linear_mha)ln2 = nn.LayerNorm(d_model).to(device)ln2.load_state_dict(loaded_state_dict['layer_norms_2'][i])layer_norms_2.append(ln2)lin1 = nn.Linear(d_model, d_ff).to(device)lin1.load_state_dict(loaded_state_dict['ffn_linear_1'][i])ffn_linear_1.append(lin1)lin2 = nn.Linear(d_ff, d_model).to(device)lin2.load_state_dict(loaded_state_dict['ffn_linear_2'][i])ffn_linear_2.append(lin2)

最后,咱们加载了最终的 LayerNorm 和位置编码。这就像是给模型的“大脑”安装了最后的“保护层”。

final_layer_norm = nn.LayerNorm(d_model).to(device)
final_layer_norm.load_state_dict(loaded_state_dict['final_layer_norm'])
positional_encoding = loaded_state_dict['positional_encoding'].to(device)

Step 2.4: 定义优化器和损失函数

咱们收集了所有需要训练的参数,包括新初始化的视觉投影层和重新调整大小的嵌入/输出层。这就像是给模型的“训练引擎”添加了所有的“燃料”。

all_trainable_parameters = list(token_embedding_table.parameters())
all_trainable_parameters.extend(list(vision_projection_layer.parameters()))
for i in range(n_layers):all_trainable_parameters.extend(list(layer_norms_1[i].parameters()))all_trainable_parameters.extend(list(mha_qkv_linears[i].parameters()))all_trainable_parameters.extend(list(mha_output_linears[i].parameters()))all_trainable_parameters.extend(list(layer_norms_2[i].parameters()))all_trainable_parameters.extend(list(ffn_linear_1[i].parameters()))all_trainable_parameters.extend(list(ffn_linear_2[i].parameters()))
all_trainable_parameters.extend(list(final_layer_norm.parameters()))
all_trainable_parameters.extend(list(output_linear_layer.parameters()))

接下来,咱们定义了 AdamW 优化器来管理这些参数,并定义了 Cross-Entropy 损失函数,确保忽略填充标记和非目标标记(比如提示标记)。这就像是给模型的训练过程设置了一个“指南针”,让它知道如何朝着正确的方向前进。

optimizer = optim.AdamW(all_trainable_parameters, lr=learning_rate)
criterion = nn.CrossEntropyLoss(ignore_index=ignore_index)

Step 3: 多模态训练循环(内联)

Step 3.1: 训练循环结构

咱们开始训练模型啦!在每个训练周期中,咱们随机选择一批数据,提取对应的图像特征、输入 ID、目标 ID 和注意力掩码,然后进行前向传播、计算损失、反向传播和参数更新。这就像是让模型在“训练场”上反复练习,直到它能够熟练地处理图像和文本的组合。

losses = []for epoch in range(epochs):indices = torch.randint(0, num_sequences_available, (batch_size,))xb_ids = all_input_ids[indices].to(device)yb_ids = all_target_ids[indices].to(device)batch_masks = all_attention_masks[indices].to(device)batch_img_paths = [all_image_paths[i] for i in indices.tolist()]try:batch_img_features = torch.stack([extracted_image_features[p] for p in batch_img_paths]).to(device)except KeyError as e:print(f"Error: Missing extracted feature for image path {e}. Ensure Step 1.1 completed correctly. Skipping epoch.")continueB, T = xb_ids.shapeC = d_modelprojected_img_features = vision_projection_layer(batch_img_features)projected_img_features = projected_img_features.unsqueeze(1)text_token_embeddings = token_embedding_table(xb_ids)combined_embeddings = text_token_embeddings.clone()combined_embeddings[:, 0:num_img_tokens, :] = projected_img_featurespos_enc_slice = positional_encoding[:, :T, :]x = combined_embeddings + pos_enc_slicepadding_mask_expanded = batch_masks.unsqueeze(1).unsqueeze(2)combined_attn_mask = causal_mask[:,:,:T,:T] * padding_mask_expandedfor i in range(n_layers):x_input_block = xx_ln1 = layer_norms_1[i](x_input_block)qkv = mha_qkv_linears[i](x_ln1)qkv = qkv.view(B, T, n_heads, 3 * d_k).permute(0, 2, 1, 3)q, k, v = qkv.chunk(3, dim=-1)attn_scores = (q @ k.transpose(-2, -1)) * (d_k ** -0.5)attn_scores_masked = attn_scores.masked_fill(combined_attn_mask == 0, float('-inf'))attention_weights = F.softmax(attn_scores_masked, dim=-1)attention_weights = torch.nan_to_num(attention_weights)attn_output = attention_weights @ vattn_output = attn_output.permute(0, 2, 1, 3).contiguous().view(B, T, C)mha_result = mha_output_linears[i](attn_output)x = x_input_block + mha_resultx_input_ffn = xx_ln2 = layer_norms_2[i](x_input_ffn)ffn_hidden = ffn_linear_1[i](x_ln2)ffn_activated = F.relu(ffn_hidden)ffn_output = ffn_linear_2[i](ffn_activated)x = x_input_ffn + ffn_outputfinal_norm_output = final_layer_norm(x)logits = output_linear_layer(final_norm_output)B_loss, T_loss, V_loss = logits.shapeif yb_ids.size(1) != T_loss:if yb_ids.size(1) > T_loss:targets_reshaped = yb_ids[:, :T_loss].contiguous().view(-1)else:padded_targets = torch.full((B_loss, T_loss), ignore_index, device=device)padded_targets[:, :yb_ids.size(1)] = yb_idstargets_reshaped = padded_targets.view(-1)else:targets_reshaped = yb_ids.view(-1)logits_reshaped = logits.view(-1, V_loss)loss = criterion(logits_reshaped, targets_reshaped)optimizer.zero_grad()if not torch.isnan(loss) and not torch.isinf(loss):loss.backward()optimizer.step()else:print(f"Warning: Invalid loss detected (NaN or Inf) at epoch {epoch+1}. Skipping optimizer step.")loss = Noneif loss is not None:current_loss = loss.item()losses.append(current_loss)if epoch % eval_interval == 0 or epoch == epochs - 1:print(f"  Epoch {epoch+1}/{epochs}, Loss: {current_loss:.4f}")elif epoch % eval_interval == 0 or epoch == epochs - 1:print(f"  Epoch {epoch+1}/{epochs}, Loss: Invalid (NaN/Inf)")

最后,咱们绘制了训练损失曲线,以直观地展示模型的训练过程。这就像是给模型的训练过程拍了一张“进度照”,让咱们能够清楚地看到它的进步。

import matplotlib.pyplot as plt
plt.figure(figsize=(20, 3))
plt.plot(losses)
plt.title("Training Loss Over Epochs")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.grid(True)
plt.show()

Step 4: 多模态生成(内联)

Step 4.1: 准备输入图像和提示

咱们选择了一个图像(比如绿色圆形)和一个文本提示(比如“Describe this image:”),对图像进行预处理,提取其特征,并将其投影到训练好的视觉投影层。这就像是给模型准备了一个“输入套餐”,让它能够根据图像和提示生成回答。

test_image_path = image_paths["green"]
test_prompt_text = "Describe this image: "

接下来,咱们对图像进行预处理,提取特征,并将其投影到训练好的视觉投影层。

try:test_img = Image.open(test_image_path).convert('RGB')test_img_tensor = image_transforms(test_img).unsqueeze(0).to(device)with torch.no_grad():test_img_features_raw = vision_model(test_img_tensor)vision_projection_layer.eval()with torch.no_grad():test_img_features_projected = vision_projection_layer(test_img_features_raw)print(f"  Processed image: '{os.path.basename(test_image_path)}'")print(f"  Projected image features shape: {test_img_features_projected.shape}")
except FileNotFoundError:print(f"Error: Test image not found at {test_image_path}. Cannot generate.")test_img_features_projected = None

最后,咱们对提示进行分词,并将其与图像特征组合成初始上下文。这就像是把图像和提示“打包”成一个序列,让模型能够开始生成回答。

img_id = char_to_int[img_token]
prompt_ids = [char_to_int[ch] for ch in test_prompt_text]
initial_context_ids = torch.tensor([[img_id] * num_img_tokens + prompt_ids], dtype=torch.long, device=device)
print(f"  Tokenized prompt: '{test_prompt_text}' -> {initial_context_ids.tolist()}")

Step 4.2: 生成循环(自回归解码)

咱们开始生成回答啦!在每个步骤中,咱们准备当前的输入序列,提取嵌入,注入图像特征,添加位置编码,创建注意力掩码,然后通过 Transformer 块进行前向传播。这就像是让模型根据当前的“输入套餐”生成下一个“魔法单词”。

generated_sequence_ids = initial_context_ids
with torch.no_grad():for _ in range(max_new_tokens):current_ids_context = generated_sequence_ids[:, -block_size:]B_gen, T_gen = current_ids_context.shapeC_gen = d_modelcurrent_token_embeddings = token_embedding_table(current_ids_context)gen_combined_embeddings = current_token_embeddingsif img_id in current_ids_context[0].tolist():img_token_pos = 0gen_combined_embeddings[:, img_token_pos:(img_token_pos + num_img_tokens), :] = test_img_features_projectedpos_enc_slice_gen = positional_encoding[:, :T_gen, :]x_gen = gen_combined_embeddings + pos_enc_slice_gengen_causal_mask = causal_mask[:,:,:T_gen,:T_gen]for i in range(n_layers):x_input_block_gen = x_genx_ln1_gen = layer_norms_1[i](x_input_block_gen)qkv_gen = mha_qkv_linears[i](x_ln1_gen)qkv_gen = qkv_gen.view(B_gen, T_gen, n_heads, 3 * d_k).permute(0, 2, 1, 3)q_gen, k_gen, v_gen = qkv_gen.chunk(3, dim=-1)attn_scores_gen = (q_gen @ k_gen.transpose(-2, -1)) * (d_k ** -0.5)attn_scores_masked_gen = attn_scores_gen.masked_fill(gen_causal_mask == 0, float('-inf'))attention_weights_gen = F.softmax(attn_scores_masked_gen, dim=-1)attention_weights_gen = torch.nan_to_num(attention_weights_gen)attn_output_gen = attention_weights_gen @ v_genattn_output_gen = attn_output_gen.permute(0, 2, 1, 3).contiguous().view(B_gen, T_gen, C_gen)mha_result_gen = mha_output_linears[i](attn_output_gen)x_gen = x_input_block_gen + mha_result_genx_input_ffn_gen = x_genx_ln2_gen = layer_norms_2[i](x_input_ffn_gen)ffn_hidden_gen = ffn_linear_1[i](x_ln2_gen)ffn_activated_gen = F.relu(ffn_hidden_gen)ffn_output_gen = ffn_linear_2[i](ffn_activated_gen)x_gen = x_input_ffn_gen + ffn_output_genfinal_norm_output_gen = final_layer_norm(x_gen)logits_gen = output_linear_layer(final_norm_output_gen)logits_last_token = logits_gen[:, -1, :]probs = F.softmax(logits_last_token, dim=-1)next_token_id = torch.multinomial(probs, num_samples=1)generated_sequence_ids = torch.cat((generated_sequence_ids, next_token_id), dim=1)if next_token_id.item() == eos_token_id:print("  <EOS> token generated. Stopping.")breakelse:print(f"  Reached max generation length ({max_new_tokens}). Stopping.")

Step 4.3: 解码生成的序列

最后,咱们把生成的序列 ID 转换回人类可读的字符串。这就像是把模型生成的“魔法单词”翻译回人类的语言。

final_ids_list = generated_sequence_ids[0].tolist()
decoded_text = ""
for id_val in final_ids_list:if id_val in int_to_char:decoded_text += int_to_char[id_val]else:decoded_text += f"[UNK:{id_val}]"print(f"--- Final Generated Output ---")
print(f"Image: {os.path.basename(test_image_path)}")
response_start_index = num_img_tokens + len(test_prompt_text)
print(f"Prompt: {test_prompt_text}")
print(f"Generated Response: {decoded_text[response_start_index:]}")

Step 6: 保存模型状态(可选)

为了保存咱们训练好的多模态模型,咱们需要把所有模型组件和配置保存到一个字典中,然后用 torch.save() 保存到文件中。这就像是给模型拍了一张“全家福”,让它能够随时被加载和使用。

save_dir = 'saved_models'
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, 'multimodal_model.pt')multimodal_state_dict = {'config': {'vocab_size': vocab_size,'d_model': d_model,'n_heads': n_heads,'n_layers': n_layers,'d_ff': d_ff,'block_size': block_size,'num_img_tokens': num_img_tokens,'vision_feature_dim': vision_feature_dim},'tokenizer': {'char_to_int': char_to_int,'int_to_char': int_to_char},'token_embedding_table': token_embedding_table.state_dict(),'vision_projection_layer': vision_projection_layer.state_dict(),'positional_encoding': positional_encoding,'layer_norms_1': [ln.state_dict() for ln in layer_norms_1],'mha_qkv_linears': [l.state_dict() for l in mha_qkv_linears],'mha_output_linears': [l.state_dict() for l in mha_output_linears],'layer_norms_2': [ln.state_dict() for ln in layer_norms_2],'ffn_linear_1': [l.state_dict() for l in ffn_linear_1],'ffn_linear_2': [l.state_dict() for l in ffn_linear_2],'final_layer_norm': final_layer_norm.state_dict(),'output_linear_layer': output_linear_layer.state_dict()
}torch.save(multimodal_state_dict, save_path)
print(f"Multi-modal model saved to {save_path}")

加载保存的多模态模型

加载保存的模型状态字典后,咱们可以根据配置和 tokenizer 重建模型组件,并加载它们的状态字典。这就像是把之前保存的“全家福”重新组装起来,让模型能够随时被使用。

model_load_path = 'saved_models/multimodal_model.pt'
loaded_state_dict = torch.load(model_load_path, map_location=device)
print(f"Loaded state dictionary from '{model_load_path}'.")config = loaded_state_dict['config']
vocab_size = config['vocab_size']
d_model = config['d_model']
n_heads = config['n_heads']
n_layers = config['n_layers']
d_ff = config['d_ff']
block_size = config['block_size']
num_img_tokens = config['num_img_tokens']
vision_feature_dim = config['vision_feature_dim']
d_k = d_model // n_headschar_to_int = loaded_state_dict['tokenizer']['char_to_int']
int_to_char = loaded_state_dict['tokenizer']['int_to_char']causal_mask = torch.tril(torch.ones(block_size, block_size, device=device)).view(1, 1, block_size, block_size)token_embedding_table = nn.Embedding(vocab_size, d_model).to(device)
token_embedding_table.load_state_dict(loaded_state_dict['token_embedding_table'])vision_projection_layer = nn.Linear(vision_feature_dim, d_model).to(device)
vision_projection_layer.load_state_dict(loaded_state_dict['vision_projection_layer'])positional_encoding = loaded_state_dict['positional_encoding'].to(device)layer_norms_1 = []
mha_qkv_linears = []
mha_output_linears = []
layer_norms_2 = []
ffn_linear_1 = []
ffn_linear_2 = []for i in range(n_layers):ln1 = nn.LayerNorm(d_model).to(device)ln1.load_state_dict(loaded_state_dict['layer_norms_1'][i])layer_norms_1.append(ln1)qkv_dict = loaded_state_dict['mha_qkv_linears'][i]has_qkv_bias = 'bias' in qkv_dictqkv = nn.Linear(d_model, 3 * d_model, bias=has_qkv_bias).to(device)qkv.load_state_dict(qkv_dict)mha_qkv_linears.append(qkv)out_dict = loaded_state_dict['mha_output_linears'][i]has_out_bias = 'bias' in out_dictout = nn.Linear(d_model, d_model, bias=has_out_bias).to(device)out.load_state_dict(out_dict)mha_output_linears.append(out)ln2 = nn.LayerNorm(d_model).to(device)ln2.load_state_dict(loaded_state_dict['layer_norms_2'][i])layer_norms_2.append(ln2)ff1_dict = loaded_state_dict['ffn_linear_1'][i]has_ff1_bias = 'bias' in ff1_dictff1 = nn.Linear(d_model, d_ff, bias=has_ff1_bias).to(device)ff1.load_state_dict(ff1_dict)ffn_linear_1.append(ff1)ff2_dict = loaded_state_dict['ffn_linear_2'][i]has_ff2_bias = 'bias' in ff2_dictff2 = nn.Linear(d_ff, d_model, bias=has_ff2_bias).to(device)ff2.load_state_dict(ff2_dict)ffn_linear_2.append(ff2)final_layer_norm = nn.LayerNorm(d_model).to(device)
final_layer_norm.load_state_dict(loaded_state_dict['final_layer_norm'])output_dict = loaded_state_dict['output_linear_layer']
has_output_bias = 'bias' in output_dict
output_linear_layer = nn.Linear(d_model, vocab_size, bias=has_output_bias).to(device)
output_linear_layer.load_state_dict(output_dict)print("Multi-modal model components loaded successfully.")

使用加载的模型进行推理

加载模型后,咱们可以用它来进行推理。这就像是让模型根据图像和提示生成回答,就像一个超级智能的机器人一样。

def generate_with_image(image_path, prompt, max_new_tokens=50):"""Generate text response for an image and prompt"""token_embedding_table.eval()vision_projection_layer.eval()for i in range(n_layers):layer_norms_1[i].eval()mha_qkv_linears[i].eval()mha_output_linears[i].eval()layer_norms_2[i].eval()ffn_linear_1[i].eval()ffn_linear_2[i].eval()final_layer_norm.eval()output_linear_layer.eval()image = Image.open(image_path).convert('RGB')img_tensor = image_transforms(image).unsqueeze(0).to(device)with torch.no_grad():img_features_raw = vision_model(img_tensor)img_features_projected = vision_projection_layer(img_features_raw)img_id = char_to_int[img_token]prompt_ids = [char_to_int[ch] for ch in prompt]context_ids = torch.tensor([[img_id] + prompt_ids], dtype=torch.long, device=device)for _ in range(max_new_tokens):context_ids = context_ids[:, -block_size:]# [Generation logic goes here - follow the same steps as in Step 4.2]# [Logic to get next token]# [Logic to check for EOS and break]# [Logic to decode and return the result]

结语

通过这篇文章,咱们实现了一个端到端的多模态 Transformer 模型,能够处理图像和文本的组合,并生成有趣的回答。虽然这个实现比较基础,但它展示了如何将视觉和语言信息融合在一起,为更复杂的应用奠定了基础。希望这篇文章能激发你对多模态人工智能的兴趣,让你也能创造出自己的超级智能模型!


http://www.mrgr.cn/news/97975.html

相关文章:

  • 蓝桥杯篇---客观题
  • 代码大模型的发展:通义灵码与KwaiCoder的技术探讨
  • ASEG的鉴定
  • RK3568 基于Gstreamer的多媒体调试记录
  • 为什么Java不支持多继承?如何实现多继承?
  • NLP高频面试题(四十)——什么是 BitFit?
  • JavaWeb 课堂笔记 —— 08 请求响应
  • 人工智能之数学基础:复矩阵
  • 《Python星球日记》第22天:NumPy 基础
  • 算法题型讲解
  • 蓝桥杯基础数论入门
  • UE学习记录part15
  • OSPF接口的网络类型和不规则区域
  • 17. git fetch
  • 41、web前端开发之Vue3保姆教程(五 项目实战)
  • 2025年4月7日--4月13日(learn openg+dx+ogre+bullet+ue5肉鸽)
  • Linux入门指南:从零开始探索开源世界
  • Kaggle-Digit Recognizer-(多分类+卷积神经网络CNN)
  • react从零开始的基础课
  • linux下截图工具的选择