usecrate::approxeq::ApproxEq;usecrate::trig::Trig;usecore::cmp::{Eq,PartialEq};usecore::hash::Hash;usecore::iter::Sum;usecore::ops::{Add,AddAssign,Div,DivAssign,Mul,MulAssign,Neg,Rem,Sub,SubAssign};#[cfg(feature = "bytemuck")]usebytemuck::{Pod,Zeroable};usenum_traits::real::Real;usenum_traits::{Float,FloatConst,NumCast,One,Zero};#[cfg(feature = "serde")]useserde::{Deserialize,Serialize};/// An angle in radians#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Hash)]#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]pubstructAngle<T>{pub radians:T,}#[cfg(feature = "bytemuck")]unsafeimpl<T:Zeroable>ZeroableforAngle<T>{}#[cfg(feature = "bytemuck")]unsafeimpl<T:Pod>PodforAngle<T>{}#[cfg(feature = "arbitrary")]impl<'a,T>arbitrary::Arbitrary<'a>forAngle<T>whereT:arbitrary::Arbitrary<'a>,{// This implementation could be derived, but the derive would require an `extern crate std`.fnarbitrary(u:&mutarbitrary::Unstructured<'a>)->arbitrary::Result<Self>{Ok(Angle{radians:arbitrary::Arbitrary::arbitrary(u)?,})}fnsize_hint(depth:usize)->(usize,Option<usize>){<Tasarbitrary::Arbitrary>::size_hint(depth)}}impl<T>Angle<T>{#[inline]pubfnradians(radians:T)->Self{Angle{ radians }}#[inline]pubfnget(self)->T{self.radians}}impl<T>Angle<T>whereT:Trig,{#[inline]pubfndegrees(deg:T)->Self{Angle{radians:T::degrees_to_radians(deg),}}#[inline]pubfnto_degrees(self)->T{T::radians_to_degrees(self.radians)}}impl<T>Angle<T>whereT:Rem<Output=T>+Sub<Output=T>+Add<Output=T>+Zero+FloatConst+PartialOrd+Copy,{/// Returns this angle in the [0..2*PI[ range.pubfnpositive(&self)->Self{let two_pi =T::PI()+T::PI();letmut a =self.radians % two_pi;if a <T::zero(){a = a + two_pi;}Angle::radians(a)}/// Returns this angle in the ]-PI..PI] range.pubfnsigned(&self)->Self{Angle::pi()-(Angle::pi()-*self).positive()}}impl<T>Angle<T>whereT:Rem<Output=T>+Mul<Output=T>+Sub<Output=T>+Add<Output=T>+One+FloatConst+Copy,{/// Returns the shortest signed angle between two angles.////// Takes wrapping and signs into account.pubfnangle_to(&self, to:Self)->Self{let two =T::one()+T::one();let max =T::PI()* two;let d =(to.radians -self.radians)% max;Angle::radians(two * d % max - d)}/// Linear interpolation between two angles, using the shortest path.pubfnlerp(&self, other:Self, t:T)->Self{*self+self.angle_to(other)* t}}impl<T>Angle<T>whereT:Float,{/// Returns `true` if the angle is a finite number.#[inline]pubfnis_finite(self)->bool{self.radians.is_finite()}}impl<T>Angle<T>whereT:Real,{/// Returns `(sin(self), cos(self))`.pubfnsin_cos(self)->(T,T){self.radians.sin_cos()}}impl<T>Angle<T>whereT:Zero,{pubfnzero()->Self{Angle::radians(T::zero())}}impl<T>Angle<T>whereT:FloatConst+Add<Output=T>,{pubfnpi()->Self{Angle::radians(T::PI())}pubfntwo_pi()->Self{Angle::radians(T::PI()+T::PI())}pubfnfrac_pi_2()->Self{Angle::radians(T::FRAC_PI_2())}pubfnfrac_pi_3()->Self{Angle::radians(T::FRAC_PI_3())}pubfnfrac_pi_4()->Self{Angle::radians(T::FRAC_PI_4())}}impl<T>Angle<T>whereT:NumCast+Copy,{/// Cast from one numeric representation to another.#[inline]pubfncast<NewT:NumCast>(&self)->Angle<NewT>{self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another.pubfntry_cast<NewT:NumCast>(&self)->Option<Angle<NewT>>{NumCast::from(self.radians).map(|radians|Angle{ radians })}// Convenience functions for common casts./// Cast angle to `f32`.#[inline]pubfnto_f32(&self)->Angle<f32>{self.cast()}/// Cast angle `f64`.#[inline]pubfnto_f64(&self)->Angle<f64>{self.cast()}}impl<T:Add<T,Output=T>>AddforAngle<T>{typeOutput=Self;fnadd(self, other:Self)->Self{Self::radians(self.radians + other.radians)}}impl<T:Copy+Add<T,Output=T>>Add<&Self>forAngle<T>{typeOutput=Self;fnadd(self, other:&Self)->Self{Self::radians(self.radians + other.radians)}}impl<T:Add+Zero>SumforAngle<T>{fnsum<I:Iterator<Item=Self>>(iter:I)->Self{iter.fold(Self::zero(),Add::add)}}impl<'a,T:'a+Add+Copy+Zero>Sum<&'aSelf>forAngle<T>{fnsum<I:Iterator<Item=&'aSelf>>(iter:I)->Self{iter.fold(Self::zero(),Add::add)}}impl<T:AddAssign<T>>AddAssignforAngle<T>{fnadd_assign(&mutself, other:Angle<T>){self.radians += other.radians;}}impl<T:Sub<T,Output=T>>Sub<Angle<T>>forAngle<T>{typeOutput=Angle<T>;fnsub(self, other:Angle<T>)-><SelfasSub>::Output{Angle::radians(self.radians - other.radians)}}impl<T:SubAssign<T>>SubAssignforAngle<T>{fnsub_assign(&mutself, other:Angle<T>){self.radians -= other.radians;}}impl<T:Div<T,Output=T>>Div<Angle<T>>forAngle<T>{typeOutput=T;#[inline]fndiv(self, other:Angle<T>)->T{self.radians / other.radians}}impl<T:Div<T,Output=T>>Div<T>forAngle<T>{typeOutput=Angle<T>;#[inline]fndiv(self, factor:T)->Angle<T>{Angle::radians(self.radians / factor)}}impl<T:DivAssign<T>>DivAssign<T>forAngle<T>{fndiv_assign(&mutself, factor:T){self.radians /= factor;}}impl<T:Mul<T,Output=T>>Mul<T>forAngle<T>{typeOutput=Angle<T>;#[inline]fnmul(self, factor:T)->Angle<T>{Angle::radians(self.radians * factor)}}impl<T:MulAssign<T>>MulAssign<T>forAngle<T>{fnmul_assign(&mutself, factor:T){self.radians *= factor;}}impl<T:Neg<Output=T>>NegforAngle<T>{typeOutput=Self;fnneg(self)->Self{Angle::radians(-self.radians)}}impl<T:ApproxEq<T>>ApproxEq<T>forAngle<T>{#[inline]fnapprox_epsilon()->T{T::approx_epsilon()}#[inline]fnapprox_eq_eps(&self, other:&Angle<T>, approx_epsilon:&T)->bool{self.radians.approx_eq_eps(&other.radians, approx_epsilon)}}#[test]fnwrap_angles(){usecore::f32::consts::{FRAC_PI_2,PI};assert!(Angle::radians(0.0).positive().approx_eq(&Angle::zero()));assert!(Angle::radians(FRAC_PI_2).positive().approx_eq(&Angle::frac_pi_2()));assert!(Angle::radians(-FRAC_PI_2).positive().approx_eq(&Angle::radians(3.0*FRAC_PI_2)));assert!(Angle::radians(3.0*FRAC_PI_2).positive().approx_eq(&Angle::radians(3.0*FRAC_PI_2)));assert!(Angle::radians(5.0*FRAC_PI_2).positive().approx_eq(&Angle::frac_pi_2()));assert!(Angle::radians(2.0*PI).positive().approx_eq(&Angle::zero()));assert!(Angle::radians(-2.0*PI).positive().approx_eq(&Angle::zero()));assert!(Angle::radians(PI).positive().approx_eq(&Angle::pi()));assert!(Angle::radians(-PI).positive().approx_eq(&Angle::pi()));assert!(Angle::radians(FRAC_PI_2).signed().approx_eq(&Angle::frac_pi_2()));assert!(Angle::radians(3.0*FRAC_PI_2).signed().approx_eq(&-Angle::frac_pi_2()));assert!(Angle::radians(5.0*FRAC_PI_2).signed().approx_eq(&Angle::frac_pi_2()));assert!(Angle::radians(2.0*PI).signed().approx_eq(&Angle::zero()));assert!(Angle::radians(-2.0*PI).signed().approx_eq(&Angle::zero()));assert!(Angle::radians(-PI).signed().approx_eq(&Angle::pi()));assert!(Angle::radians(PI).signed().approx_eq(&Angle::pi()));}#[test]fnlerp(){typeA=Angle<f32>;let a =A::radians(1.0);let b =A::radians(2.0);assert!(a.lerp(b,0.25).approx_eq(&Angle::radians(1.25)));assert!(a.lerp(b,0.5).approx_eq(&Angle::radians(1.5)));assert!(a.lerp(b,0.75).approx_eq(&Angle::radians(1.75)));assert!(a.lerp(b +A::two_pi(),0.75).approx_eq(&Angle::radians(1.75)));assert!(a.lerp(b -A::two_pi(),0.75).approx_eq(&Angle::radians(1.75)));assert!(a.lerp(b +A::two_pi()*5.0,0.75).approx_eq(&Angle::radians(1.75)));}#[test]fnsum(){typeA=Angle<f32>;let angles =[A::radians(1.0),A::radians(2.0),A::radians(3.0)];let sum =A::radians(6.0);assert_eq!(angles.iter().sum::<A>(), sum);}