当前位置: 首页 > news >正文

使用 Python 项目管理工具 uv 快速创建 MCP 服务(Cherry Studio、Trae 添加 MCP 服务)

文章目录

  • 下载Trae
  • uv 工具教程参考我的这篇文章
  • 创建 uv 项目
  • main.py
  • Cherry Studio 添加 MCP 服务
    • DeepSeek API
    • 配置 DeepSeek API
    • 调用 MCP 服务
  • Trae 添加 MCP 服务
    • 添加 MCP
    • 创建智能体
  • 使用智能体
    • 调用 MCP 创建 demo 表
    • 查询 demo 表结构信息
    • demo 表插入 2 条测试数据
    • 查询 demo 表中的数据

下载Trae

  • https://www.trae.com.cn/
    在这里插入图片描述

uv 工具教程参考我的这篇文章

  • 让 Python 项目管理变简单(uv 工具快速上手指南)

创建 uv 项目

uv init demo
cd demo
  • 添加依赖项
uv add 'mcp[cli]'

在这里插入图片描述

main.py

import asyncio
import argparse
import sqlite3
import logging
from contextlib import closing
from pathlib import Path
from pydantic import AnyUrl
from typing import Anyfrom mcp.server import InitializationOptions
from mcp.server.lowlevel import Server, NotificationOptions
from mcp.server.stdio import stdio_server
import mcp.types as typeslogger = logging.getLogger('mcp_sqlite_server')
logger.info("Starting MCP SQLite Server")class SqliteDatabase:def __init__(self, db_path: str):self.db_path = str(Path(db_path).expanduser())Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)self._init_database()self.insights: list[str] = []def _init_database(self):"""Initialize connection to the SQLite database"""logger.debug("Initializing database connection")with closing(sqlite3.connect(self.db_path)) as conn:conn.row_factory = sqlite3.Rowconn.close()def _synthesize_memo(self) -> str:"""Synthesizes business insights into a formatted memo"""logger.debug(f"Synthesizing memo with {len(self.insights)} insights")if not self.insights:return "No business insights have been discovered yet."insights = "\n".join(f"- {insight}" for insight in self.insights)memo = "📊 Business Intelligence Memo 📊\n\n"memo += "Key Insights Discovered:\n\n"memo += insightsif len(self.insights) > 1:memo += "\nSummary:\n"memo += f"Analysis has revealed {len(self.insights)} key business insights that suggest opportunities for strategic optimization and growth."logger.debug("Generated basic memo format")return memodef _execute_query(self, query: str, params: dict[str, Any] | None = None) -> list[dict[str, Any]]:"""Execute a SQL query and return results as a list of dictionaries"""logger.debug(f"Executing query: {query}")try:with closing(sqlite3.connect(self.db_path)) as conn:conn.row_factory = sqlite3.Rowwith closing(conn.cursor()) as cursor:if params:cursor.execute(query, params)else:cursor.execute(query)if query.strip().upper().startswith(('INSERT', 'UPDATE', 'DELETE', 'CREATE', 'DROP', 'ALTER')):conn.commit()affected = cursor.rowcountlogger.debug(f"Write query affected {affected} rows")return [{"affected_rows": affected}]results = [dict(row) for row in cursor.fetchall()]logger.debug(f"Read query returned {len(results)} rows")return resultsexcept Exception as e:logger.error(f"Database error executing query: {e}")raiseasync def main(db_path: str):logger.info(f"Starting SQLite MCP Server with DB path: {db_path}")db = SqliteDatabase(db_path)server = Server("sqlite-manager")logger.debug("Registering handlers")@server.list_resources()async def handle_list_resources() -> list[types.Resource]:logger.debug("Handling list_resources request")return [types.Resource(uri=AnyUrl("memo://insights"),name="Business Insights Memo",description="A living document of discovered business insights",mimeType="text/plain",)]@server.read_resource()async def handle_read_resource(uri: AnyUrl) -> str:logger.debug(f"Handling read_resource request for URI: {uri}")if uri.scheme != "memo":logger.error(f"Unsupported URI scheme: {uri.scheme}")raise ValueError(f"Unsupported URI scheme: {uri.scheme}")path = str(uri).replace("memo://", "")if not path or path != "insights":logger.error(f"Unknown resource path: {path}")raise ValueError(f"Unknown resource path: {path}")return db._synthesize_memo()@server.list_tools()async def handle_list_tools() -> list[types.Tool]:"""List available tools"""return [types.Tool(name="read_query",description="Execute a SELECT query on the SQLite database",inputSchema={"type": "object","properties": {"query": {"type": "string", "description": "SELECT SQL query to execute"},},"required": ["query"],},),types.Tool(name="write_query",description="Execute an INSERT, UPDATE, or DELETE query on the SQLite database",inputSchema={"type": "object","properties": {"query": {"type": "string", "description": "SQL query to execute"},},"required": ["query"],},),types.Tool(name="create_table",description="Create a new table in the SQLite database",inputSchema={"type": "object","properties": {"query": {"type": "string", "description": "CREATE TABLE SQL statement"},},"required": ["query"],},),types.Tool(name="list_tables",description="List all tables in the SQLite database",inputSchema={"type": "object","properties": {},},),types.Tool(name="describe_table",description="Get the schema information for a specific table",inputSchema={"type": "object","properties": {"table_name": {"type": "string", "description": "Name of the table to describe"},},"required": ["table_name"],},),types.Tool(name="append_insight",description="Add a business insight to the memo",inputSchema={"type": "object","properties": {"insight": {"type": "string", "description": "Business insight discovered from data analysis"},},"required": ["insight"],},),]@server.call_tool()async def handle_call_tool(name: str, arguments: dict[str, Any] | None) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:"""Handle tool execution requests"""try:if name == "list_tables":results = db._execute_query("SELECT name FROM sqlite_master WHERE type='table'")return [types.TextContent(type="text", text=str(results))]elif name == "describe_table":if not arguments or "table_name" not in arguments:raise ValueError("Missing table_name argument")results = db._execute_query(f"PRAGMA table_info({arguments['table_name']})")return [types.TextContent(type="text", text=str(results))]elif name == "append_insight":if not arguments or "insight" not in arguments:raise ValueError("Missing insight argument")db.insights.append(arguments["insight"])_ = db._synthesize_memo()# Notify clients that the memo resource has changedawait server.request_context.session.send_resource_updated(AnyUrl("memo://insights"))return [types.TextContent(type="text", text="Insight added to memo")]if not arguments:raise ValueError("Missing arguments")if name == "read_query":if not arguments["query"].strip().upper().startswith("SELECT"):raise ValueError("Only SELECT queries are allowed for read_query")results = db._execute_query(arguments["query"])return [types.TextContent(type="text", text=str(results))]elif name == "write_query":if arguments["query"].strip().upper().startswith("SELECT"):raise ValueError("SELECT queries are not allowed for write_query")results = db._execute_query(arguments["query"])return [types.TextContent(type="text", text=str(results))]elif name == "create_table":if not arguments["query"].strip().upper().startswith("CREATE TABLE"):raise ValueError("Only CREATE TABLE statements are allowed")db._execute_query(arguments["query"])return [types.TextContent(type="text", text="Table created successfully")]else:raise ValueError(f"Unknown tool: {name}")except sqlite3.Error as e:return [types.TextContent(type="text", text=f"Database error: {str(e)}")]except Exception as e:return [types.TextContent(type="text", text=f"Error: {str(e)}")]async with stdio_server() as (read_stream, write_stream):logger.info("Server running with stdio transport")await server.run(read_stream,write_stream,InitializationOptions(server_name="sqlite",server_version="0.1.0",capabilities=server.get_capabilities(notification_options=NotificationOptions(),experimental_capabilities={},),),)if __name__ == "__main__":parser = argparse.ArgumentParser(description='SQLite MCP Server')parser.add_argument('--db-path', default="./sqlite_mcp_server.db", help='Path to SQLite database file')args = parser.parse_args()asyncio.run(main(args.db_path))

Cherry Studio 添加 MCP 服务

  • 下载地址:https://cherry-ai.com/

  • MCP 参数

--directory
~/TraeProjects/demo
run
main.py
--db-path
~/TraeProjects/demo/test.db

在这里插入图片描述
在这里插入图片描述

DeepSeek API

  • 申请 API_KEY:https://platform.deepseek.com/usage

在这里插入图片描述

配置 DeepSeek API

在这里插入图片描述

调用 MCP 服务

在这里插入图片描述
在这里插入图片描述

Trae 添加 MCP 服务

  • 下载Trae:https://www.trae.com.cn/

添加 MCP

{"mcpServers": {"sqlite-server": {"command": "uv","args": ["--directory","~/TraeProjects/demo","run","main.py","--db-path","~/TraeProjects/demo/test.db"]}}
}

在这里插入图片描述
在这里插入图片描述

创建智能体

在这里插入图片描述

使用智能体

调用 MCP 创建 demo 表

在这里插入图片描述

查询 demo 表结构信息

在这里插入图片描述

demo 表插入 2 条测试数据

在这里插入图片描述

查询 demo 表中的数据

在这里插入图片描述


http://www.mrgr.cn/news/100232.html

相关文章:

  • 蓝耘平台介绍:算力赋能AI创新的智算云平台
  • (三) Trae 调试C++ 基本概念
  • 开发并发布一个属于自己的包(npm)
  • fps项目总结:生成武器子弹丧尸攻击
  • 从FP32到BF16,再到混合精度的全景解析
  • TortoiseGit使用图解
  • 《Learning Langchain》阅读笔记8-RAG(4)在vector store中存储embbdings
  • 如何使用URDF搭建双臂UR移动机器人,并在RViz中可视化
  • 【MySQL】MySQL索引与事务
  • 【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
  • 张 LLM提示词拓展16中方式
  • 【中级软件设计师】函数调用 —— 传值调用和传地址调用 (附软考真题)
  • 【计算机视觉】CV实践项目- 基于PaddleSeg的遥感建筑变化检测全解析:从U-Net 3+原理到工程实践
  • Python-Agent调用多个Server-FastAPI版本
  • 小刚说C语言刷题——1565成绩(score)
  • Lesar: 面向 Lustre/Scade 语言的形式化模型检测工具
  • Nginx 反向代理,啥是“反向代理“啊,为啥叫“反向“代理?而不叫“正向”代理?
  • 语音合成之五语音合成中的“一对多”问题主流模型解决方案分析
  • 新!在 podman-machine-default 中安装 CUDA、cuDNN、Anaconda、PyTorch 等并验证安装
  • MiniMind模型的web交互功能初试