哈希表-算法小结
哈希表
map set 数组
在C++中,set 和 map 分别提供以下三种数据结构,其底层实现以及优劣如下表所示:
集合 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::set | 红黑树 | 有序 | 否 | 否 | O(log n) | O(log n) |
std::multiset | 红黑树 | 有序 | 是 | 否 | O(logn) | O(logn) |
std::unordered_set | 哈希表 | 无序 | 否 | 否 | O(1) | O(1) |
std::unordered_set底层实现为哈希表,std::set 和std::multiset 的底层实现是红黑树,
红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(logn) | O(logn) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O(log n) | O(log n) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。
同理,std::map 和std::multimap 的key也是有序的
Set与Multiset-笔记-CSDN博客
有效的字母异位词
思路
定义一个数组叫做record用来上记录字符串s里字符出现的次数
242. 有效的字母异位词 - 力扣(LeetCode)
两个数组的交集
class Solution {
public:vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {unordered_set<int>result_set;unordered_set<int>nums_set(nums1.begin(),nums1.end());for(auto n2:nums2){if(nums_set.find(n2)!=nums_set.end()){result_set.insert(n2);}}return vector<int>(result_set.begin(),result_set.end());}
};
两数之和
在遍历数组的时候,只需要向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素
class Solution {
public:vector<int> twoSum(vector<int>& nums, int target) {std::unordered_map <int,int> map;for(int i = 0; i < nums.size(); i++) {// 遍历当前元素,并在map中寻找是否有匹配的keyauto iter = map.find(target - nums[i]); if(iter != map.end()) {return {iter->second, i};}// 如果没找到匹配对,就把访问过的元素和下标加入到map中map.insert(pair<int, int>(nums[i], i)); }return {};}
};
1. 两数之和 - 力扣(LeetCode)
四数之和
- 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
-
- 再遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
三数之和
双指针
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
如果nums[i] + nums[left] + nums[right] > 0
说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0
说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止