当前位置: 首页 > news >正文

批量归一化(Batch Normalization)原理与PyTorch实现

批量归一化(Batch Normalization)是加速深度神经网络训练的常用技术。本文通过Fashion-MNIST数据集,演示如何从零实现批量归一化,并对比PyTorch内置API的简洁实现方式。


1. 从零实现批量归一化

1.1 批量归一化函数实现

import torch
from torch import nn
from d2l import torch as d2ldef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):if not torch.is_grad_enabled():# 预测模式下使用移动平均X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 全连接层:特征维计算均值和方差mean = X.mean(dim=0)var = ((X - mean) ** 2).mean(dim=0)else:# 卷积层:通道维计算均值和方差mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下更新移动平均X_hat = (X - mean) / torch.sqrt(var + eps)moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta  # 缩放和平移return Y, moving_mean.data, moving_var.data

1.2 批量归一化层类

class BatchNorm(nn.Module):def __init__(self, num_features, num_dims):super().__init__()if num_dims == 2:shape = (1, num_features)else:shape = (1, num_features, 1, 1)self.gamma = nn.Parameter(torch.ones(shape))self.beta = nn.Parameter(torch.zeros(shape))self.moving_mean = torch.zeros(shape)self.moving_var = torch.ones(shape)def forward(self, X):if self.moving_mean.device != X.device:self.moving_mean = self.moving_mean.to(X.device)self.moving_var = self.moving_var.to(X.device)Y, self.moving_mean, self.moving_var = batch_norm(X, self.gamma, self.beta, self.moving_mean,self.moving_var, eps=1e-5, momentum=0.9)return Y

1.3 构建含批量归一化的网络

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),nn.Linear(84, 10))

1.4 训练与结果

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果

loss 0.277, train acc 0.898, test acc 0.835
28009.9 examples/sec on cuda:0

训练曲线

2. 使用PyTorch内置批量归一化

2.1 简洁实现网络结构

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5),nn.BatchNorm2d(6),nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5),nn.BatchNorm2d(16),nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(256, 120),nn.BatchNorm1d(120),nn.Sigmoid(),nn.Linear(120, 84),nn.BatchNorm1d(84),nn.Sigmoid(),nn.Linear(84, 10))

 2.2 训练与结果对比

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果

loss 0.264, train acc 0.902, test acc 0.849
44608.4 examples/sec on cuda:0

训练曲线

3. 关键参数分析

查看第一个批量归一化层的缩放(gamma)和偏移(beta)参数:

print(net[1].gamma.reshape((-1,)), 
print(net[1].beta.reshape((-1,)))

 输出

(tensor([0.3957, 2.2124, 2.8581, 2.1908, 3.6253, 3.5650], device='cuda:0', grad_fn=<ReshapeAliasBackward0>),
tensor([ 0.1832, -2.5689, -3.2450, -0.7221, 1.1290, 2.2353], device='cuda:0', grad_fn=<ReshapeAliasBackward0>))

4. 结论

  1. 性能对比:PyTorch内置实现相比手动实现,测试准确率从83.5%提升到84.9%,且训练速度更快(44k样本/秒 vs 28k样本/秒)

  2. 实现差异:内置API自动处理设备迁移和参数初始化,代码更简洁

  3. 注意事项:全连接层使用nn.BatchNorm1d,卷积层使用nn.BatchNorm2d

完整代码已通过测试,可直接复现实验结果。批量归一化能有效加速收敛并提升模型泛化能力,是深度网络设计的必备组件。


提示:运行代码需要安装d2l库(pip install d2l)并支持GPU环境。


http://www.mrgr.cn/news/98410.html

相关文章:

  • 用Webpack 基础配置快速搭建项目开发环境
  • Multisim使用教程详尽版--(2025最新版)
  • DICOM通讯(ACSE->DIMSE->Worklist)
  • Linux vagrant 导入ubuntu到virtualbox
  • spring-boot nacos
  • Java-面向对象
  • Uniapp: 大纲
  • One-Hot标签编码方法详解
  • STM32(M4)入门: 概述、keil5安装与模板建立(价值 3w + 的嵌入式开发指南)
  • 《高阶函数:把函数当玩具传来传去》
  • Linux命令-vim编辑
  • 第十六届蓝桥杯大赛软件赛省赛 Python 大学 B 组 满分题解
  • 供应链管理:探索供应链管理的边界
  • android面试情景题详解:android如何处理断网、网络切换或低速网络情况下的业务连续性
  • SomeIP:服务端or客户端发送event或method源码参考via CAPL
  • linux多线(进)程编程——番外1:内存映射与mmap
  • 欧拉服务器操作系统部署deekseep(Ollama+DeekSeep+open WebUI)
  • 数据库索引深度解析:原理、类型与高效使用实践
  • ARCGIS PRO DSK 利用两期地表DEM数据计算工程土方量
  • 在轨道交通控制系统中如何实现μs级任务同步