当前位置: 首页 > news >正文

2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)

问题1:产业关联性分析

question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读:

% 问题1:分析中国主要产业之间的相互关系function question1()% 清空工作区和命令窗口clear;clc;% 设置中文显示set(0,'DefaultAxesFontName','宋体');set(0,'DefaultTextFontName','宋体');% 定义产业名称industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};n = length(industries);% 创建相关系数矩阵(示例数据)rng(42); % 设置随机种子以保证结果可重复correlation_matrix = rand(n);% 确保矩阵对称correlation_matrix = (correlation_matrix + correlation_matrix')/2;% 对角线设为1correlation_matrix(logical(eye(n))) = 1;% 创建热力图figure('Position', [100, 100, 800, 600]);h = heatmap(industries, industries, correlation_matrix);h.Title = '中国主要产业相关性分析';h.XLabel = '产业';h.YLabel = '产业';% 保存图片saveas(gcf, 'problem_1_industry_correlation.png');% 输出分析结果fprintf('产业相关性分析完成,热力图已保存为"problem_1_industry_correlation.png"\n');% 显示相关系数矩阵fprintf('\n相关系数矩阵:\n');disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 产业名称定义:使用 cell 数组存储产业名称,便于后续操作。
  2. 随机相关系数矩阵:使用 rand 函数生成一个随机矩阵,并通过对称化处理确保矩阵的对称性。
  3. 对角线处理:将对角线元素设为1,表示产业与自身的完全相关性。
  4. 可视化:使用 heatmap 函数生成热力图,直观展示产业间的相关性。

问题2:投资-GDP关系模型

question2.m 文件中,我们建立了投资与GDP之间的关系模型。以下是代码的详细解读:

% 问题2:建立投资与GDP之间的关系模型function question2()% 清空工作区和命令窗口clear;clc;% 设置中文显示set(0,'DefaultAxesFontName','宋体');set(0,'DefaultTextFontName','宋体');% 定义产业名称industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};n = length(industries);% 创建相关系数矩阵(示例数据)rng(42); % 设置随机种子以保证结果可重复correlation_matrix = rand(n);% 确保矩阵对称correlation_matrix = (correlation_matrix + correlation_matrix')/2;% 对角线设为1correlation_matrix(logical(eye(n))) = 1;% 创建热力图figure('Position', [100, 100, 800, 600]);h = heatmap(industries, industries, correlation_matrix);h.Title = '中国主要产业相关性分析';h.XLabel = '产业';h.YLabel = '产业';% 保存图片saveas(gcf, 'problem_2_industry_correlation.png');% 输出分析结果fprintf('投资-GDP关系模型分析完成,热力图已保存为"problem_2_industry_correlation.png"\n');% 显示相关系数矩阵fprintf('\n相关系数矩阵:\n');disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 数据模拟:使用 normrnd 函数生成正态分布的模拟投资数据,代表不同产业的投资额。
  2. 输入矩阵构建:将各产业的投资数据组合成输入矩阵 X,用于回归分析。
  3. GDP数据模拟:通过线性组合投资数据生成模拟GDP数据,并加入随机噪声。
  4. 线性回归模型:使用 fitlm 函数建立多元线性回归模型,分析投资对GDP的影响。
  5. 模型评估:输出R方值和各产业投资对GDP的影响系数,评估模型的拟合效果。

获取完整代码

查看后续第三、四、五小题完整代码,请访问:

  • (内容实时更新)2025年第三届“华数杯”国际大学生数学建模竞赛B题完整代码【含Matlab/Python版本】

http://www.mrgr.cn/news/83351.html

相关文章:

  • 如何规模化实现完全自动驾驶?Mobileye提出解题“新”思路
  • IP 地址与蜜罐技术
  • 2025 最新React面试题
  • 【npm依赖包介绍】借助rimraf依赖包,在用npm run build构建项目时,清空dist目录,避免新旧混合
  • 网站自动签到
  • ls指令详讲
  • 熵与交叉熵:从不确定性角度理解 KL 散度
  • win32汇编环境,窗口程序中对按钮控件常用操作的示例
  • 2025年第三届“华数杯”国际赛A题解题思路与代码(Python版)
  • linux RT-Preempt spin lock实现
  • TVbox 手机、智能电视节目一网打尽
  • 2025年第三届“华数杯”国际赛A题解题思路与代码(Matlab版)
  • Ubuntu | PostgreSQL | 解决 ERROR: `xmllint` is missing on your system.
  • 初学stm32 --- DAC模数转换器工作原理
  • 2025年第三届“华数杯”国际大学生数学建模竞赛A题完整论文讲解
  • 嵌入式C语言:二维数组
  • LeetCode 热题 100 | 哈希
  • C#从“Hello World!“开始
  • JDK21虚拟线程死锁问题
  • 【Delphi 开箱即用 6】应用程序在任务栏中更换ico图标
  • ORB-SALM3配置流程及问题记录
  • kubeneters-循序渐进Cilium网络(二)
  • 二、智能体强化学习——深度强化学习核心算法
  • Spring bean的生命周期和扩展
  • 鸿蒙面试 2025-01-10
  • C#Halcon二维码识别