当前位置: 首页 > news >正文

交响曲-24-3-单细胞CNV分析及聚类

CNV概述

 小于1kb是常见的插入、移位、缺失等的变异

人体内包含<10% 的正常CNV,我们的染色体数是两倍体,正常情况下,只有一条染色体表达,另一条沉默,当表达的那条染色体发生CNV之后,表达数量就会成倍增加,如果是人体内正常的CNV,人体会自动调节使其恢复至正常水平,但是体细胞CNV变异会导致肿瘤的发生,这就是单细胞分析的基础,CNV表达数量的增多,导致基因表达数量成倍增加或成倍缺失。

CNV变异种类

CNV的临床应用

1. 产前诊断

2. 靶向用药

3. 肿瘤早筛

单细胞检测CNV

对1的解释:🥑低质量和双细胞对CNV的影响非常大,因为CNV是基于基因表达水平的变化,一旦存在双细胞或者低质量的细胞,就会对CNV的判断产生非常大的干扰。

🍑发生肿瘤细胞一般是上皮细胞,免疫细胞几乎不发生癌变,但是也有B淋巴细胞发生癌变的现象,成纤维细胞一般也不会发生癌变

🍐对2的解释:reference就是基线的参考,单细胞判断是否发生CNV是源于其基因的表达量多少,在跑inferCNV的时候,如果不指定参考,就把样本的表达值平均做参考🚦这样做误差会非常大,正常的做法是:上皮细胞发生癌变,我们选择正常的上皮细胞做reference,以此判断癌变的上皮细胞发生了哪些CNV事件。但困难是我们判断不出正常的及癌变的上皮细胞,因为单细胞已经失去了空间信息。备选项:选用免疫细胞/成纤维作为reference,如果只选择免疫细胞作为参考来判断上皮细胞是否发生癌变,但是不准确,因为两类细胞本身就不一样,会产生假阳性。最好的方法:采用多种细胞(上皮、内皮、成纤维)求平均值的原则。

☕第三:并不是说ref表达100,数据表达120就是高了,CNV是大片段的缺失,而不是单个基因,若窗口大小=50,那么一个基因的位置表达情况是由它上游50个基因,下游50个基因以及其自身的共同平均表达情况决定,这个数据再与ref进行比较。

Reference的选择

文献应用

 🌺上面图片讲解:图片上半部分颜色很浅,是对应的ref(E8)红框圈出来的部分。如果指定的好的话,是不会有CNV事件的出现,如果指定不合适,就会和下面一样有CNV事件的出现。下面的图,黄框的部分,证明是正常的细胞类型,绿框部分是说明这种细胞类型可能含有CNV,但也有一部分不含有CNV,绿框分上下两部分,上面明显的CNV,下面没有,这是因为,某些上皮细胞在癌变的过程中会有过渡态,通过CNV判断过渡态的时候,就会出现这种情况,在单细胞中说明这类细胞是过渡态,在空间中,这类细胞一部分在肿瘤内,一部分在正常区域,这就是值得关注的细胞类型💃

 算法原理

上述的7,8条是在矫正噪音

三种CNV信号识别原则

1. 硬阈值策略(公司常用)

2.动态阈值推荐使用

3.软阈值,文章中不常用

HMMs预测模型

有i3和i6两种模型,i6是公司常用的模型,这种比i3好一些,划分更细

文献运用

 

cnv事件是逐步积累的事件,一开始是小的CNV,慢慢积累之后,CNV事件越来越严重,就会产生轨迹上的推动,拥有CNV事件越多,说明这个CNV发生的越早,先有了这个CNV事件,后面才有其他的CNV事件,先有的这个细胞数量会最多,后面的细胞数量会减少,但是细胞恶性程度会变高。在进行CNV识别聚类之后,为了识别CNV的进化方向,可以使用UPhyloplot2,这个软件的上限是只能识别8个分支

轨迹分析的文献应用(下游分析)

copyKAT这个软件有个缺点就是,它在识别正常细胞的时候容易发生误判,用的不多。肿瘤细胞克隆亚型分析:CNV聚类:恶性程度高的聚成一类,中性的聚成一类,低的聚成一类。

问题:

如果是单肿瘤样本,就没有ref可以指定?分析不了CNV吗?

如果里面有正常细胞,就指定正常细胞作为ref,如果没有正常细胞,就指定其他样本的正常细胞作为ref

在CNV分析中,一般都是多样本联合分析

代码

inferCNV非常耗资源,跑这个的时候不要把单细胞的样本都放进来,把怀疑是肿瘤细胞的放进来,免疫细胞不要放


http://www.mrgr.cn/news/83160.html

相关文章:

  • ​​​​​​芯盾时代以数据为核心的车联网业务安全解决方案
  • Elixir语言的面向对象编程
  • 力扣经典题目之219. 存在重复元素 II
  • 设计模式(1)——面向对象和面向过程,封装、继承和多态
  • Airflow:SQL Sensor 监控数据库业务变化
  • uniapp-vue3 实现, 一款带有丝滑动画效果的单选框组件,支持微信小程序、H5等多端
  • web服务器架构,websocket
  • Linux 下 Vim 环境安装踩坑问题汇总及解决方法(重置版)
  • Visio 画阀门 符号 : 电动阀的画法
  • (一)Ubuntu20.04版本的ROS环境配置与基本概述
  • [开源]自动化定位建图系统(视频)
  • python+fpdf:创建pdf并实现表格数据写入
  • 《Spring Framework实战》8:4.1.3.Bean 概述
  • 数据结构:ArrayList与顺序表
  • nacos注册中心 + OpenFeign远程调用
  • 《Spring Framework实战》10:4.1.4.2.详细的依赖和配置
  • MMDetection3D环境配置
  • Ubuntu中使用miniconda安装R和R包devtools
  • 如何在Windows上编译OpenCV4.7.0
  • Node.js中的fs模块:文件写入与读取
  • leetcode78.子集
  • (四)ROS通信编程——服务通信
  • Mapper XML 文件纳入 classpath 的解决方案
  • 微信小程序实现登录注册
  • C# 元组
  • 聚类系列 (二)——HDBSCAN算法详解