当前位置: 首页 > news >正文

【GPTs】Email Responder Pro:高效生成专业回复邮件


在这里插入图片描述

博客主页: [小ᶻZ࿆]
本文专栏: AIGC | GPTs应用实例


文章目录

  • 💯GPTs指令
  • 💯前言
  • 💯Email Responder Pro
    • 主要功能
    • 适用场景
    • 优点
    • 缺点
  • 💯小结


在这里插入图片描述


💯GPTs指令

  • 中文翻译:
    Email Craft 是一款专门用于撰写专业电子邮件回复的助手。启动后,它会要求用户将收到的邮件粘贴到聊天中。该助手会分析来信的内容、语气和意图,从而生成适合的回复。它将提供一份与发件人专业性和语气相符的回复,并解决邮件中提出的所有问题。如果邮件意图不明确,助手可能会提出有针对性的问题以澄清后再进行回复。其目标是创建简洁相关礼貌的邮件回复,传达必要信息,同时保持专业通信中应有的礼仪。

  • 英文GPTs指令:
    Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
    

  • 关于GPTs指令如何在ChatGPT上使用,看这篇文章:

【AIGC】如何在ChatGPT中制作个性化GPTs应用详解     https://blog.csdn.net/2201_75539691?type=blog

  • 关于如何使用国内AI工具复现类似GPTs效果,看这篇文章:

【AIGC】国内AI工具复现GPTs效果详解     https://blog.csdn.net/2201_75539691?type=blog


💯前言

  • 随着人工智能生成内容(AIGC)技术的迅猛发展,ChatGPT的应用领域也在不断扩展。最近我在探索GPTs的各种应用,发现了一款特别有意思的工具,叫Email Responder Pro
  • 日常工作中,回复各种邮件往往需要花费不少时间,既要确保内容简洁得体,又要准确捕捉对方的意图。Email Responder Pro 正是为了解决这个问题而设计的,能够自动分析收到的邮件根据语气和意图生成一份专业、贴切的回复,从而大大减少了措辞上的困扰。
    Email Responder Pro
    在这里插入图片描述

💯Email Responder Pro

  • Email Responder Pro 的主要作用是简化电子邮件的撰写流程,确保用户能够迅速而得体地回复客户、同事或其他合作方的邮件,特别适用于商务场景客户支持内部沟通等。
    Email Responder Pro
    在这里插入图片描述

主要功能

  1. 快速生成专业邮件回复:通过解析用户的指示和邮件内容,生成合适的回复内容,确保语气得当高效精准
    在这里插入图片描述

  2. 定制化沟通:在编写回复时,先考虑用户的沟通目标,突出关键内容,帮助用户实现特定沟通需求
    在这里插入图片描述

  3. 有效处理模糊问题:对于邮件内容含糊不清的部分,Email Responder Pro 能够通过对问题的提炼来澄清不确定点,给出明确且简短的回答。在这里插入图片描述

  4. 灵活性:无论是商业沟通客户支持还是内部协调,用户只需提供上下文和基本期待,系统就能够自动生成合适的回复。
    在这里插入图片描述


适用场景

Email Responder Pro 适用于多种日常邮件沟通场景:

  • 商务沟通:无论是初次联系潜在客户,还是跟进长期合作伙伴的需求,工具可以生成符合礼仪的回复,快速应对各种商业情境
    在这里插入图片描述

  • 客户支持:在客服场景中,工具可以根据用户提出的问题生成精准回复,减少客服人员的负担,提高响应速度
    在这里插入图片描述

  • 内部沟通:帮助处理同事间的信息请求任务协调等邮件,确保团队成员之间的沟通畅通无阻
    在这里插入图片描述

优点

  1. 节省时间:Email Responder Pro 的核心优势在于帮助用户高效回复邮件,省去反复思考如何表述的过程,尤其在面对高频次沟通时,能有效降低时间压力
    在这里插入图片描述

  2. 保证专业度:系统根据语境选择恰当的语言风格,确保回复专业且礼貌,提升用户在对外交流中的形象。
    在这里插入图片描述

  3. 降低沟通摩擦:对于那些不明确潜在误解的邮件内容,Email Responder Pro 可以帮助澄清不确定点,降低沟通中的障碍
    在这里插入图片描述

  4. 定制化程度高:可以根据用户的需求,突出关键内容,灵活地进行语气和内容调整
    在这里插入图片描述


缺点

虽然 Email Responder Pro 具有极高的实用性,但它也存在一定的局限性

  1. 复杂情境处理受限:在面对特别复杂或涉及隐含情感的邮件内容时,工具可能难以完全理解并生成符合人类情感逻辑的回复。
    在这里插入图片描述

  2. 过度依赖风险:如果用户过度依赖自动生成的内容,可能会失去与人交流的敏感度灵活应对能力,尤其是涉及到重要客户关系时。
    在这里插入图片描述

  3. 个性化欠缺:尽管该工具有一定的定制化功能,但在某些场合下,自动生成的回复难以完全体现用户的个人风格
    在这里插入图片描述


💯小结

  • 在这里插入图片描述
    Email Responder Pro 是一款实用的工具,旨在简化日常邮件回复的过程,特别适合在繁忙的商务、客服和内部沟通中快速生成专业得体的回复。它不仅节省了大量时间,还确保了沟通的专业性,通过准确的语气调整和意图捕捉,降低了沟通摩擦。这种工具在提高工作效率的同时,也在处理模糊或不明确问题时表现出色,能够帮助用户有效澄清沟通中的关键点
    然而,Email Responder Pro 在某些复杂或情感细腻的情境中存在局限,且过度依赖可能导致用户沟通敏感度的下降。总体来说,它是一个帮助高效管理邮件往来的强大工具,为现代职场中频繁的沟通任务提供了可靠的支持

import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")

在这里插入图片描述



http://www.mrgr.cn/news/71195.html

相关文章:

  • 【JavaWeb】JavaWeb入门之XML详解
  • 网络安全-Linux基础(bash脚本)
  • kaggle 如何利用API下载数据集
  • 新Activity启动时Task的位置(分屏场景)
  • Flume的安装与使用
  • vscode的一些使用心得
  • 局域网桥接只能单向ping问题,arp无法建立
  • 【缓存策略】你知道 Write Through(直写)这个缓存策略吗?
  • 1.vue环境搭建
  • 如何快速查看在 GitHub 上的所有PR提交记录
  • 微信机器人接入聊天模块
  • fastapi 查询参数支持 Pydantic Model:参数校验与配置技巧
  • IntelliJ+SpringBoot项目实战(四)--快速上手数据库开发
  • 【Python进阶】Python中的数据库交互:使用SQLite进行本地数据存储
  • 【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-小蓝的目标
  • 国标GB28181-2022平台EasyGBS国标GB28181软件在GB/T28181协议中的加密措施
  • 2024要如何对公司CAD图纸进行加密?十种方法加密保护图纸!
  • GitHub4.2k Java开源神器一个免费的基于JNA的Java操作系统和硬件信息库
  • 重磅!Pubmed停止更新了?
  • 反沙箱 反虚拟机的一些笔记
  • 【Linux实践2】实验三:死锁的避免
  • 系统架构师-考点梳理
  • uniapp vuex的使用
  • Transformer(三):论文 Attention Is All You Need
  • 【2024最新】渗透测试工具大全(超详细),收藏这一篇就够了!
  • 【comfyui教程】comfyui攻略:故障报错应对指南!