当前位置: 首页 > news >正文

c++11(一)

c++11(一)

  • 1. C++11的发展历史
  • 2. 列表初始化
    • 2.1 C++98传统的{}
    • 2.2 C++11中的{}
    • 2.3 C++11中的std::initializer_list
  • 3. 右值引⽤和移动语义
    • 3.1 左值和右值
    • 3.2 左值引⽤和右值引⽤
    • 3.3 引⽤延⻓⽣命周期
    • 3.4 左值和右值的参数匹配
    • 3.5 右值引⽤和移动语义的使⽤场景
      • 3.5.1 左值引⽤主要使⽤场景回顾
      • 3.5.2 移动构造和移动赋值
      • 3.5.3 右值引⽤和移动语义解决传值返回问题

1. C++11的发展历史

C++11 是 C++ 的第⼆个主要版本,并且是从 C++98 起的最重要更新。它引⼊了⼤量更改,标准化了既有实践,并改进了对 C++ 程序员可⽤的抽象。在它最终由 ISO 在 2011 年 8 ⽉ 12 ⽇采纳前,⼈们曾使⽤名称“C++0x”,因为它曾被期待在 2010 年之前发布。C++03 与 C++11 期间花了 8 年时间,故⽽这是迄今为⽌最⻓的版本间隔。从那时起,C++ 有规律地每 3 年更新⼀次。

在这里插入图片描述

2. 列表初始化

2.1 C++98传统的{}

C++98中⼀般数组和结构体可以⽤{}进⾏初始化。

struct Point
{int _x;int _y;
};
int main()
{int array1[] = { 1, 2, 3, 4, 5 };int array2[5] = { 0 };Point p = { 1, 2 };
return 0;
}

2.2 C++11中的{}

• C++11以后想统⼀初始化⽅式,试图实现⼀切对象皆可⽤{}初始化,{}初始化也叫做列表初始化。
• 内置类型⽀持,⾃定义类型也⽀持,⾃定义类型本质是类型转换,中间会产⽣临时对象,最后优化了以后变成直接构造。
• {}初始化的过程中,可以省略掉=
• C++11列表初始化的本意是想实现⼀个⼤统⼀的初始化⽅式,其次他在有些场景下带来的不少便利,如容器push/inset多参数构造的对象时,{}初始化会很⽅便

#include<iostream>
#include<vector>
using namespace std;
struct Point
{int _x;int _y;
};
class Date
{public:Date(int year = 1, int month = 1, int day = 1):_year(year), _month(month), _day(day){cout << "Date(int year, int month, int day)" << endl;}Date(const Date& d):_year(d._year), _month(d._month), _day(d._day){cout << "Date(const Date& d)" << endl;}
private:int _year;int _month;int _day;
};
// ⼀切皆可⽤列表初始化,且可以不加=
int main()
{// C++98⽀持的int a1[] = { 1, 2, 3, 4, 5 };int a2[5] = { 0 };Point p = { 1, 2 };// C++11⽀持的// 内置类型⽀持int x1 = { 2 };// ⾃定义类型⽀持// 这⾥本质是⽤{ 2025, 1, 1}构造⼀个Date临时对象// 临时对象再去拷⻉构造d1,编译器优化后合⼆为⼀变成{ 2025, 1, 1}直接构造初始化d1// 运⾏⼀下,我们可以验证上⾯的理论,发现是没调⽤拷⻉构造的Date d1 = { 2025, 1, 1};// 这⾥d2引⽤的是{ 2024, 7, 25 }构造的临时对象const Date& d2 = { 2024, 7, 25 };// 需要注意的是C++98⽀持单参数时类型转换,也可以不⽤{}Date d3 = { 2025};Date d4 = 2025;// 可以省略掉=Point p1 { 1, 2 };int x2 { 2 };Date d6 { 2024, 7, 25 };const Date& d7 { 2024, 7, 25 };// 不⽀持,只有{}初始化,才能省略=// Date d8 2025;vector<Date> v;v.push_back(d1);v.push_back(Date(2025, 1, 1));// ⽐起有名对象和匿名对象传参,这⾥{}更有性价⽐v.push_back({ 2025, 1, 1 });return 0;
}

2.3 C++11中的std::initializer_list

• 上⾯的初始化已经很⽅便,但是对象容器初始化还是不太⽅便,⽐如⼀个vector对象,我想⽤N个值去构造初始化,那么我们得实现很多个构造函数才能⽀持, vector v1 ={1,2,3};vector v2 = {1,2,3,4,5};
• C++11库中提出了⼀个std::initializer_list的类, auto il = { 10, 20, 30 }; // thetype of il is an initializer_list ,这个类的本质是底层开⼀个数组,将数据拷⻉过来,std::initializer_list内部有两个指针分别指向数组的开始和结束。
• 这是他的⽂档:initializer_list,std::initializer_list⽀持迭代器遍历。
• 容器⽀持⼀个std::initializer_list的构造函数,也就⽀持任意多个值构成的 {x1,x2,x3…} 进⾏
初始化。STL中的容器⽀持任意多个值构成的 {x1,x2,x3…} 进⾏初始化,就是通过std::initializer_list的构造函数⽀持的。

// STL中的容器都增加了⼀个initializer_list的构造
vector (initializer_list<value_type> il, const allocator_type& alloc =
allocator_type());list (initializer_list<value_type> il, const allocator_type& alloc =
allocator_type());map (initializer_list<value_type> il,const key_compare& comp =
key_compare(),const allocator_type& alloc = allocator_type());
// ...
template<class T>
class vector {
public:typedef T* iterator;vector(initializer_list<T> l){for (auto e : l)push_back(e)}
private:iterator _start = nullptr;iterator _finish = nullptr;iterator _endofstorage = nullptr;
};// 另外,容器的赋值也⽀持initializer_list的版本vector& operator= (initializer_list<value_type> il);map& operator= (initializer_list<value_type> il);
#include<vector>
#include<string>
#include<map>
using namespace std;
int main()
{std::initializer_list<int> mylist;mylist = { 10, 20, 30 };cout << sizeof(mylist) << endl;// 这⾥begin和end返回的值initializer_list对象中存的两个指针// 这两个指针的值跟i的地址跟接近,说明数组存在栈上int i = 0;cout << mylist.begin() << endl;cout << mylist.end() << endl;cout << &i << endl;// {}列表中可以有任意多个值// 这两个写法语义上还是有差别的,第⼀个v1是直接构造,// 第⼆个v2是构造临时对象+临时对象拷⻉v2+优化为直接构造vector<int> v1({ 1,2,3,4,5 });vector<int> v2 = { 1,2,3,4,5 };const vector<int>& v3 = { 1,2,3,4,5 };// 这⾥是pair对象的{}初始化和map的initializer_list构造结合到⼀起⽤了map<string, string> dict = { {"sort", "排序"}, {"string", "字符串"}};// initializer_list版本的赋值⽀持v1 = { 10,20,30,40,50 };return 0;
}

3. 右值引⽤和移动语义

C++98的C++语法中就有引⽤的语法,⽽C++11中新增了的右值引⽤语法特性,C++11之后我们之前学习的引⽤就叫做左值引⽤⽆论左值引⽤还是右值引⽤,都是给对象取别名。

3.1 左值和右值

左值是⼀个表⽰数据的表达式(如变量名或解引⽤的指针),⼀般是有持久状态,存储在内存中,我们可以获取它的地址,左值可以出现赋值符号的左边,也可以出现在赋值符号右边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。

右值也是⼀个表⽰数据的表达式,要么是字⾯值常量、要么是表达式求值过程中创建的临时对象等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。
• 值得⼀提的是,左值的英⽂简写为lvalue,右值的英⽂简写为rvalue。传统认为它们分别是left
value、right value 的缩写。现代C++中,lvalue 被解释为loactor value的缩写,可意为存储在内
存中、有明确存储地址可以取地址的对象,⽽ rvalue 被解释为 read value,指的是那些可以提供数据值,但是不可以寻址,例如:临时变量,字⾯量常量,存储于寄存器中的变量等,也就是说左值和右值的核⼼区别就是能否取地址。

#include<iostream>
using namespace std;
int main()
{// 左值:可以取地址// 以下的p、b、c、*p、s、s[0]就是常⻅的左值int* p = new int(0);int b = 1;const int c = b;*p = 10;string s("111111");s[0] = 'x';cout << &c << endl;cout << (void*)&s[0] << endl;// 右值:不能取地址double x = 1.1, y = 2.2;// 以下⼏个10、x + y、fmin(x, y)、string("11111")都是常⻅的右值10;x + y;fmin(x, y);string("11111");//cout << &10 << endl;//cout << &(x+y) << endl;//cout << &(fmin(x, y)) << endl;//cout << &string("11111") << endl;return 0;
}

3.2 左值引⽤和右值引⽤

• Type& r1 = x; Type&& rr1 = y; 第⼀个语句就是左值引⽤,左值引⽤就是给左值取别名,第⼆个就是右值引⽤,同样的道理,右值引⽤就是给右值取别名。
• 左值引⽤不能直接引⽤右值,但是const左值引⽤可以引⽤右值
• 右值引⽤不能直接引⽤左值,但是右值引⽤可以引⽤move(左值)
• template typename remove_reference::type&& move (T&&
• marogv)e;是库⾥⾯的⼀个函数模板,本质内部是进⾏强制类型转换,当然他还涉及⼀些引⽤折叠的知识,这个我们后⾯会细讲。
• 需要注意的是变量表达式都是左值属性,也就意味着⼀个右值被右值引⽤绑定后,右值引⽤变量变量表达式的属性是左值
• 语法层⾯看,左值引⽤和右值引⽤都是取别名,不开空间。从汇编底层的⻆度看下⾯代码中r1和rr1汇编层实现,底层都是⽤指针实现的,没什么区别。底层汇编等实现和上层语法表达的意义有时是背离的,所以不要然到⼀起去理解,互相佐证,这样反⽽是陷⼊迷途。

template <class _Ty>
remove_reference_t<_Ty>&& move(_Ty&& _Arg)
{// forward _Arg as movablereturn static_cast<remove_reference_t<_Ty>&&>(_Arg);
}
#include<iostream>
using namespace std;
int main()
{// 左值:可以取地址// 以下的p、b、c、*p、s、s[0]就是常⻅的左值int* p = new int(0);int b = 1;const int c = b;*p = 10;string s("111111");s[0] = 'x';double x = 1.1, y = 2.2;// 左值引⽤给左值取别名int& r1 = b;int*& r2 = p;int& r3 = *p;string& r4 = s;char& r5 = s[0];// 右值引⽤给右值取别名int&& rr1 = 10;double&& rr2 = x + y;double&& rr3 = fmin(x, y);string&& rr4 = string("11111");// 左值引⽤不能直接引⽤右值,但是const左值引⽤可以引⽤右值const int& rx1 = 10;const double& rx2 = x + y;const double& rx3 = fmin(x, y);const string& rx4 = string("11111");// 右值引⽤不能直接引⽤左值,但是右值引⽤可以引⽤move(左值)int&& rrx1 = move(b);int*&& rrx2 = move(p);int&& rrx3 = move(*p);string&& rrx4 = move(s);string&& rrx5 = (string&&)s;// b、r1、rr1都是变量表达式,都是左值cout << &b << endl;cout << &r1 << endl;cout << &rr1 << endl;// 这⾥要注意的是,rr1的属性是左值,所以不能再被右值引⽤绑定,除⾮move⼀下int& r6 = r1;// int&& rrx6 = rr1;int&& rrx6 = move(rr1);return 0;
}

3.3 引⽤延⻓⽣命周期

右值引⽤可⽤于为临时对象延⻓⽣命周期,const 的左值引⽤也能延⻓临时对象⽣存期,但这些对象⽆法被修改。

int main()
{std::string s1 = "Test";// std::string&& r1 = s1;// 错误:不能绑定到左值const std::string& r2 = s1 + s1;// OK:到 const 的左值引⽤延⻓⽣存期// r2 += "Test";// 错误:不能通过到 const 的引⽤修改std::string&& r3 = s1 + s1;// OK:右值引⽤延⻓⽣存期r3 += "Test";// OK:能通过到⾮ const 的引⽤修改std::cout << r3 << '\n';return 0;
}

3.4 左值和右值的参数匹配

• C++98中,我们实现⼀个const左值引⽤作为参数的函数,那么实参传递左值和右值都可以匹配。
• C++11以后,分别重载左值引⽤、const左值引⽤、右值引⽤作为形参的f函数,那么实参是左值会匹配f(左值引⽤),实参是const左值会匹配f(const 左值引⽤),实参是右值会匹配f(右值引⽤)。
• 右值引⽤变量在⽤于表达式时属性是左值,这个设计这⾥会感觉跟怪,下⼀⼩节我们讲右值引⽤的使⽤场景时,就能体会这样设计的价值了

#include<iostream>
using namespace std;void f(int& x)
{std::cout << "左值引⽤重载 f(" << x << ")\n";
}
void f(const int& x)
{std::cout << "到 const 的左值引⽤重载 f(" << x << ")\n";
}
void f(int&& x)
{std::cout << "右值引⽤重载 f(" << x << ")\n";
}
int main()
{int i = 1;const int ci = 2;f(i); // 调⽤ f(int&)f(ci); // 调⽤ f(const int&)f(3); // 调⽤ f(int&&),如果没有 f(int&&) 重载则会调⽤ f(const int&)f(std::move(i)); // 调⽤ f(int&&)// 右值引⽤变量在⽤于表达式时是左值int&& x = 1;f(x);// 调⽤ f(int& x)f(std::move(x)); // 调⽤ f(int&& x)return 0;
}

3.5 右值引⽤和移动语义的使⽤场景

3.5.1 左值引⽤主要使⽤场景回顾

左值引⽤主要使⽤场景是在函数中左值引⽤传参和左值引⽤传返回值时减少拷⻉,同时还可以修改实参和修改返回对象的价值。左值引⽤已经解决⼤多数场景的拷⻉效率问题,但是有些场景不能使⽤传左值引⽤返回,如addStrings和generate函数,C++98中的解决⽅案只能是被迫使⽤输出型参数解决。那么C++11以后这⾥可以使⽤右值引⽤做返回值解决吗?显然是不可能的,因为这⾥的本质是返回对象是⼀个局部对象,函数结束这个对象就析构销毁了,右值引⽤返回也⽆法概念对象已经析构销毁的事实。

class Solution {
public:// 传值返回需要拷⻉string addStrings(string num1, string num2) {string str;int end1 = num1.size()-1, end2 = num2.size()-1;// 进位int next = 0;while(end1 >= 0 || end2 >= 0){int val1 = end1 >= 0 ? num1[end1--]-'0' : 0;int val2 = end2 >= 0 ? num2[end2--]-'0' : 0;int ret = val1 + val2+next;next = ret / 10;ret = ret % 10;str += ('0'+ret);}if(next == 1)str += '1';reverse(str.begin(), str.end());return str;}
};
class Solution {
public:// 这⾥的传值返回拷⻉代价就太⼤了vector<vector<int>> generate(int numRows) {vector<vector<int>> vv(numRows);for(int i = 0; i < numRows; ++i){vv[i].resize(i+1, 1);}for(int i = 2; i < numRows; ++i){for(int j = 1; j < i; ++j){vv[i][j] = vv[i-1][j] + vv[i-1][j-1];}}return vv;
}
};

3.5.2 移动构造和移动赋值

• 移动构造函数是⼀种构造函数,类似拷⻉构造函数,移动构造函数要求第⼀个参数是该类类型的引⽤,但是不同的是要求这个参数是右值引⽤,如果还有其他参数,额外的参数必须有缺省值。
• 移动赋值是⼀个赋值运算符的重载,他跟拷⻉赋值构成函数重载,类似拷⻉赋值函数,移动赋值函数要求第⼀个参数是该类类型的引⽤,但是不同的是要求这个参数是右值引⽤。
• 对于像string/vector这样的深拷⻉的类或者包含深拷⻉的成员变量的类,移动构造和移动赋值才有意义,因为移动构造和移动赋值的第⼀个参数都是右值引⽤的类型,他的本质是要“窃取”引⽤的右值对象的资源,⽽不是像拷⻉构造和拷⻉赋值那样去拷⻉资源,从提⾼效率。下⾯的bit::string样例实现了移动构造和移动赋值,我们需要结合场景理解。

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<assert.h>
#include<string.h>
#include<algorithm>
using namespace std;
namespace bit
{class string{public:typedef char* iterator;typedef const char* const_iterator;iterator begin(){return _str;}iterator end(){return _str + _size;}const_iterator begin() const{return _str;}const_iterator end() const{return _str + _size;}string(const char* str = ""):_size(strlen(str)), _capacity(_size){cout << "string(char* str)-构造" << endl;_str = new char[_capacity + 1];strcpy(_str, str);}void swap(string& s){::swap(_str, s._str);::swap(_size, s._size);::swap(_capacity, s._capacity);}string(const string& s):_str(nullptr){cout << "string(const string& s) -- 拷⻉构造" << endl;reserve(s._capacity);for (auto ch : s){push_back(ch);}}// 移动构造string(string&& s){cout << "string(string&& s) -- 移动构造" << endl;swap(s);}string& operator=(const string& s){cout << "string& operator=(const string& s) -- 拷⻉赋值" <<endl;if (this != &s){_str[0] = '\0';_size = 0;reserve(s._capacity);for (auto ch : s){push_back(ch);}}return *this;}
// 移动赋值string& operator=(string&& s){cout << "string& operator=(string&& s) -- 移动赋值" << endl;swap(s);return *this;}~string(){cout << "~string() -- 析构" << endl;delete[] _str;_str = nullptr;}char& operator[](size_t pos){assert(pos < _size);return _str[pos];}void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];if (_str){strcpy(tmp, _str);delete[] _str;}_str = tmp;_capacity = n;}}void push_back(char ch){if (_size >= _capacity){size_t newcapacity = _capacity == 0 ? 4 : _capacity *2;reserve(newcapacity);}_str[_size] = ch;++_size;_str[_size] = '\0';}string& operator+=(char ch){push_back(ch);return *this;}const char* c_str() const{return _str;}size_t size() const{return _size;}
private:char* _str = nullptr;size_t _size = 0;size_t _capacity = 0;
};
}int main()
{bit::string s1("xxxxx");// 拷⻉构造bit::string s2 = s1;// 构造+移动构造,优化后直接构造bit::string s3 = bit::string("yyyyy");// 移动构造bit::string s4 = move(s1);cout << "******************************" << endl;return 0;
}

3.5.3 右值引⽤和移动语义解决传值返回问题

namespace bit
{string addStrings(string num1, string num2){string str;int end1 = num1.size() - 1, end2 = num2.size() - 1;int next = 0;while (end1 >= 0 || end2 >= 0){int val1 = end1 >= 0 ? num1[end1--] - '0' : 0;int val2 = end2 >= 0 ? num2[end2--] - '0' : 0;int ret = val1 + val2 + next;next = ret / 10;ret = ret % 10;str += ('0' + ret);}if (next == 1)str += '1';reverse(str.begin(), str.end());cout << "******************************" << endl;return str;}
}
// 场景1
int main()
{bit::string ret = bit::addStrings("11111", "2222");cout << ret.c_str() << endl;return 0;
}
// 场景2
int main()
{bit::string ret;ret = bit::addStrings("11111", "2222");cout << ret.c_str() << endl;return 0;
}

右值对象构造,只有拷⻉构造,没有移动构造的场景
• 图1展⽰了vs2019 debug环境下编译器对拷⻉的优化,左边为不优化的情况下,两次拷⻉构造,右边为编译器优化的场景下连续步骤中的拷⻉合⼆为⼀变为⼀次拷⻉构造。
• 需要注意的是在vs2019的release和vs2022的debug和release,下⾯代码优化为⾮常恐怖,会直接将str对象的构造,str拷⻉构造临时对象,临时对象拷⻉构造ret对象,合三为⼀,变为直接构造。变为直接构造。要理解这个优化要结合局部对象⽣命周期和栈帧的⻆度理解,如图3所⽰。
• linux下可以将下⾯代码拷⻉到test.cpp⽂件,编译时⽤ g++ test.cpp -fno-elide-
constructors 的⽅式关闭构造优化,运⾏结果可以看到图1左边没有优化的两次拷⻉。

在这里插入图片描述
右值对象构造,有拷⻉构造,也有移动构造的场景
• 图2展⽰了vs2019 debug环境下编译器对拷⻉的优化,左边为不优化的情况下,两次移动构造,右边为编译器优化的场景下连续步骤中的拷⻉合⼆为⼀变为⼀次移动构造。
• 需要注意的是在vs2019的release和vs2022的debug和release,下⾯代码优化为⾮常恐怖,会直接将str对象的构造,str拷⻉构造临时对象,临时对象拷⻉构造ret对象,合三为⼀,变为直接构造。要理解这个优化要结合局部对象⽣命周期和栈帧的⻆度理解,如图3所⽰。
• linux下可以将下⾯代码拷⻉到test.cpp⽂件,编译时⽤ g++ test.cpp -fno-elide-
constructors 的⽅式关闭构造优化,运⾏结果可以看到图1左边没有优化的两次移动。
在这里插入图片描述
在这里插入图片描述
右值对象赋值,只有拷⻉构造和拷⻉赋值,没有移动构造和移动赋值的场景
• 图4左边展⽰了vs2019 debug和 g++ test.cpp -fno-elide-constructors 关闭优化环境
下编译器的处理,⼀次拷⻉构造,⼀次拷⻉赋值。
• 需要注意的是在vs2019的release和vs2022的debug和release,下⾯代码会进⼀步优化,直接构造要返回的临时对象,str本质是临时对象的引⽤,底层⻆度⽤指针实现。运⾏结果的⻆度,我们可以看到str的析构是在赋值以后,说明str就是临时对象的别名。
在这里插入图片描述


http://www.mrgr.cn/news/70395.html

相关文章:

  • 虚幻引擎---初识篇
  • 3349、检测相邻递增子数组 Ⅰ
  • poi模板动态导出,下拉框联动,公式设置
  • Linux之管道,system V的共享内存,消息队列和信号量
  • 2024年12月Gesp七级备考知识点拾遗第一期(图的定义及遍历)
  • 【热门主题】000065 探索人工智能学习框架:开启智能未来的钥匙
  • 怎么查域名的交易价格?
  • 教育行业该怎么使用电子合同:降本增效,引领教育新未来
  • 如何提升自媒体发稿效果,必须掌握的几个技巧
  • 机器学习—多个输出的分类(Optional)
  • 2024数字化观察:你所需了解的8件事
  • monkey-安卓稳定性测试
  • 【语言建模】数据集合集!
  • 应用于新能源汽车NCV4275CDT50RKG车规级LDO线性电压调节器芯片
  • 【漏洞复现】用友 U8 OA getSessionList.jsp 敏感信息泄漏漏洞
  • 2024年最新项目管理工具推荐:哪些支持自动化测试?
  • 2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
  • 专题十——字符串
  • 网络安全之SQLMAP _DNS注入配置方法
  • MySQL初学之旅(2)增删改查—上
  • 基于微信生态的开源 AI 智能名片 2+1 链动模式 S2B2C 商城小程序源码拉新策略研究
  • linux内存管理学习笔记
  • 制造业怎么用好仓库管理系统?仓库管理系统在制造业中的应用实例
  • Python __del__()销毁对象
  • python爬虫豆瓣top250
  • 精华帖分享|历史波动率和已实现波动率纠缠研究