当前位置: 首页 > news >正文

【高等数学学习记录】无穷小的比较

1 知识点

定义:
如果 lim ⁡ β α = 0 \lim \frac{\beta}{\alpha}=0 limαβ=0,就说 β \beta β 是比 α \alpha α 高阶的无穷小,记作 β = o ( α ) \beta=o(\alpha ) β=o(α)
如果 lim ⁡ β α = ∞ \lim \frac{\beta}{\alpha}=\infty limαβ=,就说 β \beta β 是比 α \alpha α 低阶的无穷小。
如果 lim ⁡ β α = c ≠ 0 \lim \frac{\beta}{\alpha}=c\neq 0 limαβ=c=0,就说 β \beta β α \alpha α 是同阶无穷小。
如果 lim ⁡ β α = c ≠ 0 \lim \frac{\beta}{\alpha }=c\neq 0 limαβ=c=0 k > 0 k>0 k>0,就说 β \beta β 是关于 α \alpha α k k k 阶无穷小。
如果 lim ⁡ β α = 1 \lim \frac{\beta}{\alpha}=1 limαβ=1,就说 β \beta β α \alpha α 是等价无穷小,记作 α ∼ β \alpha \sim \beta αβ

定理1
β \beta β α \alpha α 是等价无穷小的充分必要条件为 β = α + o ( α ) \beta = \alpha + o(\alpha ) β=α+o(α)

定理2
α ∼ α ′ \alpha \sim \alpha ' αα β ∼ β ′ \beta \sim \beta ' ββ,且 lim ⁡ β ′ α ′ \lim \frac{\beta '}{\alpha '} limαβ 存在,则 lim ⁡ β α = lim ⁡ β ′ α ′ \lim \frac{\beta}{\alpha}=\lim \frac{\beta '}{\alpha '} limαβ=limαβ

常用等价无穷小:
(1) 1 + x n − 1 ∼ 1 n x \sqrt[n]{1+x}-1\sim \frac{1}{n}x n1+x 1n1x
(2) s i n x ∼ x sinx\sim x sinxx
(3) t a n x ∼ x tanx\sim x tanxx
(4) a r c s i n x ∼ x arcsinx\sim x arcsinxx
(5) 1 − c o s x ∼ 1 x 2 1-cosx\sim \frac{1}{x^2} 1cosxx21


2 练习题

2.1 当 x → 0 x\rightarrow 0 x0 时, 2 x − x 2 2x-x^2 2xx2 x 2 − x 3 x^2-x^3 x2x3 相比,哪一个是高阶无穷小?

  • 解:
    lim ⁡ x → 0 2 x − x 2 x 2 − x 3 \quad \lim_{x\rightarrow 0}\frac{2x-x^2}{x^2-x^3} limx0x2x32xx2
    = lim ⁡ x → 0 2 − x x − x 2 =\lim_{x\rightarrow 0}\frac{2-x}{x-x^2} =limx0xx22x
    = lim ⁡ x → 0 2 x − 1 1 − x =\lim_{x\rightarrow 0}\frac{\frac{2}{x}-1}{1-x} =limx01xx21
    = ∞ =\infty =
    ∴ lim ⁡ x → 0 x 2 − x 3 2 x − x 2 = 0 \therefore \lim_{x\rightarrow 0}\frac{x^2-x^3}{2x-x^2}=0 limx02xx2x2x3=0
    ∴ x 2 − x 3 \therefore x^2-x^3 x2x3 是比 2 x − x 2 2x-x^2 2xx2 的高阶无穷小。

2.2 当 x → 1 x\rightarrow 1 x1 时,无穷小 1 − x 1-x 1x 和 (1) 1 − x 3 1-x^3 1x3,(2) 1 2 ( 1 − x 2 ) \frac{1}{2}(1-x^2) 21(1x2) 是否同阶?是否等价?

  • 解:
  • (1)
    lim ⁡ x → 1 1 − x 1 − x 3 \quad \lim_{x\rightarrow 1}\frac{1-x}{1-x^3} limx11x31x
    = lim ⁡ x → 1 1 − x ( 1 − x ) ( 1 + x + x 2 ) =\lim_{x\rightarrow 1}\frac{1-x}{(1-x)(1+x+x^2)} =limx1(1x)(1+x+x2)1x
    = lim ⁡ x → 1 1 x 2 + x + 1 =\lim_{x\rightarrow 1}\frac{1}{x^2+x+1} =limx1x2+x+11
    = 1 3 =\frac{1}{3} =31
    ∴ 1 − x \therefore 1-x 1x 1 − x 3 1-x^3 1x3 同阶,但不等价。
  • (2)
    lim ⁡ x → 1 1 − x 1 2 ( 1 − x 2 ) \quad \lim_{x\rightarrow 1}\frac{1-x}{\frac{1}{2}(1-x^2)} limx121(1x2)1x
    = lim ⁡ x → 1 2 1 + x =\lim_{x\rightarrow 1}\frac{2}{1+x} =limx11+x2
    = 1 =1 =1
    ∴ 1 − x \therefore 1-x 1x 1 2 ( 1 − x 2 ) \frac{1}{2}(1-x^2) 21(1x2) 等价。

2.3 证明:当 x → 0 x\rightarrow 0 x0 时,有(1) a r c t a n x ∼ x arctanx\sim x arctanxx,(2) s e c x − 1 ∼ x 2 2 secx-1\sim \frac{x^2}{2} secx12x2

  • 证明:

  • (1)
    t = a r c t a n x t=arctanx t=arctanx
    ∵ lim ⁡ x → 0 a r c t a n x = lim ⁡ x → 0 x = 0 \because \lim_{x\rightarrow 0}arctanx=\lim_{x\rightarrow 0}x=0 limx0arctanx=limx0x=0
    ∴ lim ⁡ x → 0 a r c t a n x x \therefore \lim_{x\rightarrow 0}\frac{arctanx}{x} limx0xarctanx 可以转换为:
    lim ⁡ t → 0 t t a n t \quad \lim_{t\rightarrow 0}\frac{t}{tant} limt0tantt
    = lim ⁡ t → 0 t c o s t s i n t =\lim_{t\rightarrow 0}\frac{tcost}{sint} =limt0sinttcost
    = lim ⁡ t → 0 c o s t =\lim_{t\rightarrow 0}cost =limt0cost
    = 1 =1 =1
    ∴ a r c t a n x \therefore arctanx arctanx x x x 是等价无穷小。

  • (2)
    ∵ lim ⁡ x → 0 s e c x − 1 x 2 2 \because \lim_{x\rightarrow 0}\frac{secx-1}{\frac{x^2}{2}} limx02x2secx1
    = lim ⁡ x → 0 2 ( 1 − c o s x ) x 2 c o s x =\lim_{x\rightarrow 0}\frac{2(1-cosx)}{x^2cosx} =limx0x2cosx2(1cosx)
    = lim ⁡ x → 0 2 ( 1 − 1 + 2 s i n 2 x 2 ) x 2 c o s x =\lim_{x\rightarrow 0}\frac{2(1-1+2sin^2\frac{x}{2})}{x^2cosx} =limx0x2cosx2(11+2sin22x)
    = lim ⁡ x → 0 s i n 2 x 2 ( x 2 ) 2 c o s x =\lim_{x\rightarrow 0}\frac{sin^2\frac{x}{2}}{(\frac{x}{2})^2cosx} =limx0(2x)2cosxsin22x
    = 1 =1 =1
    ∴ s e c x − 1 ∼ x 2 2 \therefore secx-1\sim \frac{x^2}{2} secx12x2


2.4 利用等价无穷小的性质,求下列极限:
(1) lim ⁡ x → 0 t a n 3 x 2 x \lim_{x\rightarrow 0}\frac{tan3x}{2x} limx02xtan3x
(2) lim ⁡ x → 0 s i n ( x n ) ( s i n x ) m \lim_{x\rightarrow 0}\frac{sin(x^n)}{(sinx)^m} limx0(sinx)msin(xn) n n n m m m 为正整数)
(3) lim ⁡ x → 0 t a n x − s i n x s i n 3 x \lim_{x\rightarrow 0}\frac{tanx-sinx}{sin^3x} limx0sin3xtanxsinx
(4) lim ⁡ x → 0 s i n x − t a n x ( 1 + x 2 3 − 1 ) ( 1 + s i n x − 1 ) \lim_{x\rightarrow 0}\frac{sinx-tanx}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+sinx}-1)} limx0(31+x2 1)(1+sinx 1)sinxtanx

  • 解:
  • (1)
    ∵ t a n 3 x ∼ 3 x ( x → 0 ) \because tan3x\sim 3x(x\rightarrow 0) tan3x3x(x0)
    ∴ \therefore 原式 = lim ⁡ x → 0 3 x 2 x = 3 2 =\lim_{x\rightarrow 0}\frac{3x}{2x}=\frac{3}{2} =limx02x3x=23
  • (2)
    ∵ s i n x n ∼ x n ( x → 0 ) , s i n x ∼ x ( x → 0 ) \because sinx^n\sim x^n(x\rightarrow 0),sinx\sim x(x\rightarrow 0) sinxnxn(x0),sinxx(x0)
    ∴ \therefore 原式 = lim ⁡ x → 0 x n x m =\lim_{x\rightarrow 0}\frac{x^n}{x^m} =limx0xmxn
    = { 0 , n > m 1 , n = m ∞ , n < m =\begin{cases}0,&n>m\\1,&n=m\\\infty,&n<m\end{cases} = 0,1,,n>mn=mn<m
  • (3)
    原式 = lim ⁡ x → 0 1 − c o s x c o s x ⋅ s i n 2 x =\lim_{x\rightarrow 0}\frac{1-cosx}{cosx\cdot sin^2x} =limx0cosxsin2x1cosx
    = lim ⁡ x → 0 1 c o s x ⋅ lim ⁡ x → 0 2 s i n 2 x 2 s i n 2 x =\lim_{x\rightarrow 0}\frac{1}{cosx}\cdot \lim_{x\rightarrow 0}\frac{2sin^2\frac{x}{2}}{sin^2x} =limx0cosx1limx0sin2x2sin22x
    = 2 ⋅ lim ⁡ x → 0 s i n 2 x 2 s i n 2 x =2\cdot \lim_{x\rightarrow 0}\frac{sin^2\frac{x}{2}}{sin^2x} =2limx0sin2xsin22x
    = 2 ⋅ lim ⁡ x → 0 ( x 2 ) 2 x 2 =2\cdot \lim_{x\rightarrow 0}\frac{(\frac{x}{2})^2}{x^2} =2limx0x2(2x)2
    = 1 2 =\frac{1}{2} =21
  • (4)
    原式 = lim ⁡ x → 0 s i n x ( c o s x − 1 ) c o s x ( 1 + x 2 3 ) ( 1 + s i n x − 1 ) =\lim_{x\rightarrow 0}\frac{sinx (cosx-1)}{cosx(\sqrt[3]{1+x^2})(\sqrt{1+sinx}-1)} =limx0cosx(31+x2 )(1+sinx 1)sinx(cosx1)
    ∵ c o s x − 1 ∼ − 1 2 x 2 , t a n x ∼ x , 1 + x 2 3 − 1 ∼ 1 3 x 2 , 1 + s i n x − 1 ∼ 1 2 x \because cosx-1\sim -\frac{1}{2}x^2,tanx\sim x,\sqrt[3]{1+x^2}-1\sim \frac{1}{3}x^2,\sqrt{1+sinx}-1\sim \frac{1}{2}x cosx121x2,tanxx,31+x2 131x2,1+sinx 121x
    ∴ \therefore 原式 = lim ⁡ x → 0 − 1 2 x 2 ⋅ x 1 3 x 2 ⋅ 1 2 x = − 3 =\lim_{x\rightarrow 0}\frac{-\frac{1}{2}x^2\cdot x}{\frac{1}{3}x^2\cdot \frac{1}{2}x}=-3 =limx031x221x21x2x=3

2.5 证明无穷小的等价关系具有下列性质:
(1) α ∼ α \alpha \sim \alpha αα(自反性)
(2) 若 α ∼ β \alpha \sim \beta αβ,则 β ∼ α \beta \sim \alpha βα (对称性)
(3) 若 α ∼ β \alpha \sim \beta αβ β ∼ γ \beta \sim \gamma βγ,则 α ∼ γ \alpha \sim \gamma αγ (传递性)

  • 证明:

  • (1)
    ∵ lim ⁡ α α = 1 \because \lim \frac{\alpha}{\alpha}=1 limαα=1
    ∴ α ∼ α \therefore \alpha\sim\alpha αα

  • (2)
    ∵ α ∼ β \because \alpha \sim \beta αβ
    ∴ lim ⁡ α β = 1 \therefore \lim \frac{\alpha}{\beta}=1 limβα=1
    ∴ lim ⁡ β α = lim ⁡ 1 α β = 1 \therefore \lim \frac{\beta}{\alpha}=\lim \frac{1}{\frac{\alpha}{\beta}}=1 limαβ=limβα1=1
    ∴ β ∼ α \therefore \beta \sim \alpha βα

  • (3)
    ∵ α ∼ β \because \alpha \sim \beta αβ
    ∴ lim ⁡ α β = 1 \therefore \lim \frac{\alpha}{\beta}=1 limβα=1
    ∵ β ∼ γ \because \beta \sim \gamma βγ
    ∴ lim ⁡ β γ = 1 \therefore \lim \frac{\beta}{\gamma}=1 limγβ=1
    ∴ lim ⁡ α γ = lim ⁡ α β ⋅ β γ = 1 \therefore \lim \frac{\alpha}{\gamma}=\lim \frac{\alpha}{\beta}\cdot \frac{\beta}{\gamma}=1 limγα=limβαγβ=1
    ∴ α ∼ γ \therefore \alpha \sim \gamma αγ


  • 学习资料
    1.《高等数学(第六版)》 上册,同济大学数学系 编

http://www.mrgr.cn/news/57258.html

相关文章:

  • Java题集练习2
  • Java面试题七
  • [C#][winform]基于yolov8的道路交通事故检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面
  • RabbitMQ高级特性详解
  • 开头的例子的理解
  • OAK相机的标定流程更新与优化通知
  • 16天自制CppServer-day02
  • 带权并查集注意事项
  • 华帝携手抖音头部达人,金牌导演李力持量身打造厨电定制微短剧
  • Java避坑案例 - 接口设计_版本控制策略
  • solidworks管理员运行install.bat提示[sC]0penService 失败 5:拒绝访问。请按任意键继续...
  • HTML、CSS 和 JavaScript 的介绍
  • 防火墙概述
  • C++:模板(2)
  • Android 12.0进程保活白名单功能实现
  • SpringBoot高级-底层原理
  • 数据结构《顺序表》
  • 探索 JavaScript 事件机制(一):从基础概念到实战应用
  • sql注入 --二次注入堆叠注入文件读取getshell
  • Windows 操作系统中事件驱动架构与注册表
  • 申请https证书
  • 从0开始学Python-day6-元祖、字典、集合
  • “避免序列化灾难:掌握实现 Serializable 的真相!(二)”
  • 记录一次从nacos配置信息泄露到redis写计划任务接管主机
  • 【C++算法】11.滑动窗口_最大连续1的个数lll
  • 【Java面向对象三大特征——封装】