当前位置: 首页 > news >正文

【Qualcomm】高通SNPE框架的使用 | 原始模型转换为量化的DLC文件 | 在Android的CPU端运行模型

目录

① 激活snpe环境

② 设置环境变量

③ 模型转换

④ run on Android


首先,默认SNPE工具已经下载并且Setup相关工作均已完成。同时,拥有原始模型文件,本文使用的模型文件为SNPE 框架示例的inception_v3_2016_08_28_frozen.pb文件。image_file_list.txt文件的内容为raw图片数据的路径。 target_raw_list.txt文件的内容是raw图片数据Android设备的实际路径

激活snpe环境

conda activate snpe

② 设置环境变量

source ${SNPE_ROOT}/bin/envsetup.sh

这将设置/更新以下环境变量:

  1. SNPE_ROOT
  2. PYTHONPATH
  3. PATH
  4. LD_LIBRARY_PATH

模型转换

# snpe-tensorflow-to-dlc工具将TensorFlow模型转换为等效的Qualcomm® Neural Processing SDK DLC文件。
# 下面的命令将一个Inception v3 TensorFlow模型转换为Qualcomm®Neural Processing SDK DLC文件。
snpe-tensorflow-to-dlc --input_network $SNPE_ROOT/examples/Models/InceptionV3/tensorflow/inception_v3_2016_08_28_frozen.pb \--input_dim input "1,299,299,3" --out_node "InceptionV3/Predictions/Reshape_1" \--output_path inception_v3.dlc

量化需要另一个步骤。snpe-dlc-quantize工具用于将模型量化为支持的定点格式之一。

# 例如,下面的命令将把一个Inception v3 DLC文件转换成一个量化的Inception v3 DLC文件。snpe-dlc-quantize --input_dlc inception_v3.dlc --input_list image_file_list.txt--output_dlc inception_v3_quantized.dlc

run on Android

设置SNPE_TARGET_ARCH

export SNPE_TARGET_ARCH=aarch64-android

PUSH库和二进制文件

将Qualcomm®Neural Processing SDK库和snpe-net-run可执行文件推送到Android目标上的/data/local/tmp/snpeexample。“SNPE_TARGET_DSPARCH”设置为目标Android设备的DSP架构

export SNPE_TARGET_ARCH=aarch64-androidexport SNPE_TARGET_DSPARCH=hexagon-v73
adb shell "mkdir -p /data/local/tmp/snpeexample/$SNPE_TARGET_ARCH/bin"adb shell "mkdir -p /data/local/tmp/snpeexample/$SNPE_TARGET_ARCH/lib"adb shell "mkdir -p /data/local/tmp/snpeexample/dsp/lib"
adb push $SNPE_ROOT/lib/$SNPE_TARGET_ARCH/*.so \/data/local/tmp/snpeexample/$SNPE_TARGET_ARCH/libadb push $SNPE_ROOT/lib/$SNPE_TARGET_DSPARCH/unsigned/*.so \/data/local/tmp/snpeexample/dsp/libadb push $SNPE_ROOT/bin/$SNPE_TARGET_ARCH/snpe-net-run \/data/local/tmp/snpeexample/$SNPE_TARGET_ARCH/bin

PUSH模型相关数据Android

cd $SNPE_ROOT/examples/Models/InceptionV3
mkdir data/rawfiles && cp data/cropped/*.raw data/rawfiles/
adb shell "mkdir -p /data/local/tmp/inception_v3"
adb push data/rawfiles /data/local/tmp/inception_v3/cropped
adb push data/target_raw_list.txt /data/local/tmp/inception_v3
adb push dlc/inception_v3_quantized.dlc /data/local/tmp/inception_v3
rm -rf data/rawfiles

RUN模型使用CPU Runtime

adb shellexport SNPE_TARGET_ARCH=aarch64-androidexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/snpeexample/$SNPE_TARGET_ARCH/libexport PATH=$PATH:/data/local/tmp/snpeexample/$SNPE_TARGET_ARCH/bincd /data/local/tmp/inception_v3snpe-net-run --container inception_v3_quantized.dlc --input_list target_raw_list.txtexit

在run完模型后将结果pull到本地。

adb pull /data/local/tmp/inception_v3/output output_android

运行以下python脚本检查分类结果:

python3 scripts/show_inceptionv3_classifications_snpe.py -i data/target_raw_list.txt \-o output_android/ \-l data/imagenet_slim_labels.txt

输出应该如下所示,显示所有图像的分类结果。

Classification results
cropped/notice_sign.raw 0.175781 459 brass
cropped/plastic_cup.raw 0.976562 648 measuring cup
cropped/chairs.raw      0.285156 832 studio couch
cropped/trash_bin.raw   0.773438 413 ashcan


 

至此,本文分享的内容就结束啦。


http://www.mrgr.cn/news/34911.html

相关文章:

  • 网站架构知识之nginx第三天(day026 )
  • 启动QT时,出现找不到python27.dll的问题报错
  • 如何使用 WebAssembly 扩展后端应用
  • 2024 年Postman 如何安装汉化中文版?
  • 河南省测绘资质管理制度解析
  • Vue自定义指令详解——以若依框架中封装指令为例分析
  • 大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试
  • @JsonFormat与@DateTimeFormat的区别
  • 金九银十,字节的第一面来咯
  • (8)mysql容器启动第一次无论输入密码与否均会报错处理
  • Linux复习--网络基础(OSI七层、TCP三次握手与四次挥手、子网掩码计算)
  • Transformer-LSTM网络的轴承寿命预测,保姆级教程终于来了!
  • 数据结构和算法之树形结构(3)
  • 花半小时用豆包Marscode 和 Supabase免费部署了一个远程工作的导航站
  • 2025 广州国际新能源汽车功率半导体技术展览会与您相约广州
  • linux文件目录指令合集--拷贝、移动、查看
  • 到底是谁配谁-《分析模式》漫谈33
  • 【附实例】Python字典的各种操作
  • c++哈希
  • 算法:二维数组查找
  • UWB为什么是首选的室内定位技术
  • 【VMware】虚拟机安装
  • 基于Java+Jsp+SpringMVC漫威手办商城系统设计和实现
  • 蓝牙技术|详谈蓝牙信道探测技术,可实现厘米级精准定位
  • Google 提供基于AI的模糊测试框架
  • Axure-本地发布,局域网内用户访问