当前位置: 首页 > news >正文

旋转机械故障数据集 全网首发

旋转机械故障 数据集 11G资料


泵、齿轮箱、电机、流量、液压系统、轴承(西储大学、辛辛那提大学、FEMTO、MOSFET)、PHM08挑战数据集、我闪发动机降级模拟数据集、铣床等

旋转机械故障数据集

数据集描述

该数据集是一个综合性的旋转机械故障检测和诊断数据集,旨在帮助研究人员和开发者训练和评估基于深度学习的故障检测和预测模型。数据集涵盖了多种类型的旋转机械设备,包括泵、齿轮箱、电机、流量计、液压系统、轴承等,并记录了这些设备在不同工况下的运行数据。通过高质量的数据和详细的标注信息,该数据集为开发高效且准确的故障检测和诊断系统提供了坚实的基础。

数据规模

  • 总数据量:11GB
  • 数据类型
    • 时间序列数据(振动信号、电流信号、温度信号等)
    • 标签数据(故障类型、故障程度等)

数据特性

  • 多样化场景:覆盖了多种类型的旋转机械设备,包括泵、齿轮箱、电机、流量计、液压系统、轴承等。
  • 高质量手工标注:每条数据都有详细的标签信息,支持直接用于训练故障检测和诊断模型。
  • 真实与合成结合:数据集包含来自真实工业环境的数据以及部分模拟数据,以弥补某些特定故障样本较少的问题。
  • 多类别支持:涵盖多种故障类型和不同程度的故障,丰富了数据集的多样性。
  • 无需预处理:数据集已经过处理,可以直接用于训练,无需额外的数据预处理步骤。

应用场景

  • 智能监控:自动检测旋转机械设备的故障情况,辅助管理人员及时发现并采取应对措施,提高设备的安全性和可靠性。
  • 故障诊断:通过分析设备的运行数据,进行详细的故障诊断,提前预警潜在的故障风险。
  • 科研分析:用于研究时间序列分析算法在特定工业应用场景中的表现,特别是在复杂背景和噪声条件下的鲁棒性。
  • 教育与培训:可用于安全相关的教育和培训项目,帮助学生和从业人员更好地识别和理解旋转机械设备的故障模式。
  • 自动化管理:集成到工业系统的管理系统中,实现对设备状态的自动化监测和管理,预防设备故障。

数据集结构

典型的数据集目录结构如下:

1rotating_machinery_fault_dataset/
2├── pump/
3│   ├── data/
4│   │   ├── vibration_signal_001.csv
5│   │   ├── current_signal_001.csv
6│   │   └── ...
7│   ├── labels/
8│   │   ├── fault_labels_001.csv
9│   │   └── ...
10├── gearbox/
11│   ├── data/
12│   │   ├── vibration_signal_001.csv
13│   │   ├── current_signal_001.csv
14│   │   └── ...
15│   ├── labels/
16│   │   ├── fault_labels_001.csv
17│   │   └── ...
18├── motor/
19│   ├── data/
20│   │   ├── vibration_signal_001.csv
21│   │   ├── current_signal_001.csv
22│   │   └── ...
23│   ├── labels/
24│   │   ├── fault_labels_001.csv
25│   │   └── ...
26├── flow_meter/
27│   ├── data/
28│   │   ├── flow_signal_001.csv
29│   │   └── ...
30│   ├── labels/
31│   │   ├── fault_labels_001.csv
32│   │   └── ...
33├── hydraulic_system/
34│   ├── data/
35│   │   ├── pressure_signal_001.csv
36│   │   └── ...
37│   ├── labels/
38│   │   ├── fault_labels_001.csv
39│   │   └── ...
40├── bearing/
41│   ├── case_western_reserve_university/
42│   │   ├── data/
43│   │   │   ├── vibration_signal_001.mat
44│   │   │   └── ...
45│   │   ├── labels/
46│   │   │   ├── fault_labels_001.csv
47│   │   │   └── ...
48│   ├── university_of_cincinnati/
49│   │   ├── data/
50│   │   │   ├── vibration_signal_001.mat
51│   │   │   └── ...
52│   │   ├── labels/
53│   │   │   ├── fault_labels_001.csv
54│   │   │   └── ...
55│   ├── femto/
56│   │   ├── data/
57│   │   │   ├── vibration_signal_001.mat
58│   │   │   └── ...
59│   │   ├── labels/
60│   │   │   ├── fault_labels_001.csv
61│   │   │   └── ...
62│   ├── mosfet/
63│   │   ├── data/
64│   │   │   ├── vibration_signal_001.mat
65│   │   │   └── ...
66│   │   ├── labels/
67│   │   │   ├── fault_labels_001.csv
68│   │   │   └── ...
69├── phm08_challenge/
70│   ├── data/
71│   │   ├── sensor_data_001.csv
72│   │   └── ...
73│   ├── labels/
74│   │   ├── fault_labels_001.csv
75│   │   └── ...
76├── our_engine_degradation_simulation/
77│   ├── data/
78│   │   ├── engine_data_001.csv
79│   │   └── ...
80│   ├── labels/
81│   │   ├── degradation_labels_001.csv
82│   │   └── ...
83├── milling_machine/
84│   ├── data/
85│   │   ├── vibration_signal_001.csv
86│   │   └── ...
87│   ├── labels/
88│   │   ├── fault_labels_001.csv
89│   │   └── ...
90├── README.txt  # 数据说明文件

数据说明

  • 数据内容
    • 每个子目录下包含相应的设备类型数据。
    • data/ 目录下存放的是原始传感器数据,通常为CSV或MAT文件格式。
    • labels/ 目录下存放的是对应的标签数据,通常为CSV文件格式。
  • 标签类型
    • 故障类型
    • 故障程度
    • 其他相关特征
  • 数据增广:数据集未做数据增广,用户可以根据需要自行进行数据增广。
  • 无需预处理:数据集已经过处理,可以直接用于训练,无需额外的数据预处理步骤。

示例代码

以下是一些常用脚本的示例代码,包括加载数据、数据可视化、特征提取、模型训练和评估。

脚本1: 加载数据
1import pandas as pd
2import numpy as np
3import os
4
5def load_data(data_dir, label_dir):
6    data_files = [f for f in os.listdir(data_dir) if f.endswith('.csv')]
7    label_files = [f for f in os.listdir(label_dir) if f.endswith('.csv')]
8
9    data_list = []
10    label_list = []
11
12    for data_file, label_file in zip(data_files, label_files):
13        data_path = os.path.join(data_dir, data_file)
14        label_path = os.path.join(label_dir, label_file)
15
16        data = pd.read_csv(data_path)
17        labels = pd.read_csv(label_path)
18
19        data_list.append(data)
20        label_list.append(labels)
21
22    return data_list, label_list
23
24# 示例
25data_dir = 'path/to/pump/data'
26label_dir = 'path/to/pump/labels'
27data, labels = load_data(data_dir, label_dir)
脚本2: 数据可视化
 

python

深色版本

1import matplotlib.pyplot as plt
2
3def visualize_data(data, labels):
4    fig, ax = plt.subplots(figsize=(10, 5))
5    ax.plot(data['time'], data['vibration'], label='Vibration Signal')
6    ax.set_xlabel('Time (s)')
7    ax.set_ylabel('Vibration (m/s^2)')
8    ax.legend()
9    plt.show()
10
11# 示例
12visualize_data(data[0], labels[0])
脚本3: 特征提取
1from scipy.signal import welch
2
3def extract_features(data):
4    fs = 1000  # 采样频率
5    f, Pxx_den = welch(data['vibration'], fs, nperseg=1024)
6    features = {
7        'mean': data['vibration'].mean(),
8        'std': data['vibration'].std(),
9        'max': data['vibration'].max(),
10        'min': data['vibration'].min(),
11        'psd_mean': Pxx_den.mean(),
12        'psd_std': Pxx_den.std(),
13        'psd_max': Pxx_den.max(),
14        'psd_min': Pxx_den.min()
15    }
16    return features
17
18# 示例
19features = extract_features(data[0])
20print(features)
脚本4: 训练模型
1import tensorflow as tf
2from sklearn.model_selection import train_test_split
3from sklearn.preprocessing import StandardScaler
4
5def prepare_data(data, labels):
6    X = []
7    y = []
8
9    for d, l in zip(data, labels):
10        features = extract_features(d)
11        X.append(list(features.values()))
12        y.append(l['fault_type'][0])
13
14    X = np.array(X)
15    y = np.array(y)
16
17    scaler = StandardScaler()
18    X = scaler.fit_transform(X)
19
20    return X, y
21
22def build_model(input_shape, num_classes):
23    model = tf.keras.Sequential([
24        tf.keras.layers.Dense(64, activation='relu', input_shape=input_shape),
25        tf.keras.layers.Dropout(0.2),
26        tf.keras.layers.Dense(32, activation='relu'),
27        tf.keras.layers.Dropout(0.2),
28        tf.keras.layers.Dense(num_classes, activation='softmax')
29    ])
30
31    model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
32    return model
33
34def train_model(X, y):
35    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
36
37    num_classes = len(np.unique(y))
38    input_shape = (X_train.shape[1],)
39
40    model = build_model(input_shape, num_classes)
41    history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2)
42
43    return model, history
44
45# 示例
46X, y = prepare_data(data, labels)
47model, history = train_model(X, y)
脚本5: 评估模型
1import matplotlib.pyplot as plt
2
3def evaluate_model(model, X_test, y_test):
4    loss, accuracy = model.evaluate(X_test, y_test)
5    print(f'Test Loss: {loss:.4f}')
6    print(f'Test Accuracy: {accuracy:.4f}')
7
8    y_pred = model.predict(X_test)
9    y_pred_classes = np.argmax(y_pred, axis=1)
10
11    from sklearn.metrics import confusion_matrix, classification_report
12    cm = confusion_matrix(y_test, y_pred_classes)
13    cr = classification_report(y_test, y_pred_classes)
14
15    print('Confusion Matrix:')
16    print(cm)
17    print('Classification Report:')
18    print(cr)
19
20    return cm, cr
21
22# 示例
23X, y = prepare_data(data, labels)
24X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
25cm, cr = evaluate_model(model, X_test, y_test)

改进方向

如果您已经使用上述方法对该数据集进行了训练,并且认为还有改进空间,以下是一些可能的改进方向:

  1. 数据增强

    • 进一步增加数据增强策略,例如添加噪声、改变采样频率、插值等,以提高模型的泛化能力。
    • 使用混合增强技术,如MixUp、CutMix等,以增加数据多样性。
  2. 特征工程

    • 尝试更多的特征提取方法,例如小波变换、傅里叶变换、时频分析等,以提取更丰富的特征。
    • 结合领域知识,设计更具针对性的特征。
  3. 模型优化

    • 调整模型超参数,例如学习率、批量大小、优化器等,以找到最佳配置。
    • 尝试使用不同的网络架构,例如LSTM、GRU、CNN等,以提高模型性能。
    • 引入注意力机制,如SENet、CBAM等,以增强模型对关键区域的关注。
  4. 损失函数

    • 尝试使用不同的损失函数,例如Focal Loss、Dice Loss、IoU Loss等,以改善模型的收敛性能。
    • 结合多种损失函数,例如分类损失和回归损失的组合,以平衡不同类型的任务。
  5. 后处理

    • 使用非极大值抑制(NMS)的改进版本,如Soft-NMS、DIoU-NMS等,以提高检测结果的质量。
    • 引入边界框回归的改进方法,如GIoU、CIoU等,以提高定位精度。
  6. 迁移学习

    • 使用预训练模型进行微调,利用大规模数据集(如COCO、ImageNet)上的预训练权重,加快收敛速度并提高性能。
  7. 集成学习

    • 使用多个模型进行集成学习,通过投票或加权平均的方式提高最终的检测效果。

 


http://www.mrgr.cn/news/33899.html

相关文章:

  • 自然语言处理的算法:从SVM到Attention
  • UIKit-Camera
  • 滚动轴承故障诊断、预测与分类综合数据集
  • C语言 | Leetcode C语言题解之第430题扁平化多级双向链表
  • 全网最适合入门的面向对象编程教程:51 Python函数方法与接口-使用Zope实现接口
  • C++ | Leetcode C++题解之第429题N叉树的层序遍历
  • 6.7泊松噪声
  • 安装 Anaconda
  • Renesas R7FA8D1BH (Cortex®-M85)的 General PWM的应用实践
  • OSError: Missing dependencies for SOCKS support
  • Java数据库连接——JDBC
  • 智能农业系统——土壤养分运移转化
  • 一些迷你型信息系统 - 2
  • 如何在 MySQL Workbench 中修改表数据并保存??
  • 华为杯”第十二届中国研究生数学建模竞赛-B题: 数据的多流形结构分析
  • Hive之任务优化
  • 【Android】 IconFont的使用
  • 【ShuQiHere】 掌握卡诺图 (Karnaugh Map)——简化布尔表达式的利器
  • 01_两数之和
  • 情指行一体化平台建设方案和必要性-———未来之窗行业应用跨平台架构