当前位置: 首页 > news >正文

数据处理与统计分析篇-day08-apply()自定义函数与分组操作

一. 自定义函数

概述

  1. 当Pandas自带的API不能满足需求, 例如: 我们需要遍历的对Series中的每一条数据/DataFrame中的一列或一行数据做相同的自定义处理, 就可以使用Apply自定义函数

  2. apply函数可以接收一个自定义函数, 可以将Series对象的逐个值或DataFrame的行/列数据传递给自定义函数处理

  3. apply函数类似于编写一个for循环, 遍历行/列的每一个元素,但比使用for循环效率高很多

导包:

import numpy as np
import pandas as pd
import os
​
os.chdir(r'D:\CodeProject\03data_processing_analysis\teacher_project')  # 改变当前的工作目录.  change current work directory

apply()操作Series对象

apply()函数操作Series对象, 是把Series的逐个值进行传入并操作的.

# 1. 定义1个df对象.
df = pd.DataFrame({'a': [10, 20, 30], 'b': [20, 30, 40]})
df
​
# 2. 定义1个函数, 用于求 值 的 平方.  2 => 4,   5 => 25
def my_fun1(x):print('看看我执行了嘛!')return x ** 2
​
​
# 扩展: 定义函数, 计算x的e次方.
def my_fun2(x, e):return x ** e
​
# 3. 把上述的函数, 作用于 df对象的 a列值(Series对象)
df['a'].apply(my_fun1)  # 细节: 这里写的是函数名, 即: 函数对象.  如果写: 函数名() 则表示是在调用函数.
​
df.a.apply(my_fun2, e=3)  # 细节: 传参数时, 使用 关键字参数 写法进行传参.

apply()操作DF对象

df的apply(func, axis=)函数, 默认是传入整列值的, 而不是逐个值进行传入的.

源码解释axis参数:0 or index: apply function to each colum1 or columns: apply function to each row

解释:

axis = 0 按列传递数据 传入一列数据(Series)

axis = 1 按行传递数据 传入一列数据(Series)

df
df.apply(func1)     # 默认axis=0, 代表列, 即: 整列值传入
​
# 计算平均值,验证默认是传入整列值
def func3(x, y, z):return (x + y + z) / 3
​
# 报错,apply函数默认将df对象的整列作为参数传入
df.apply(func3)
​
def func4(x):print(x)print(type(x))df.apply(func4)
​
def func5(x):return x.mean()
​
df.apply(func5)             # 默认: axis=0(列)
df.apply(func5, axis=0)     # 效果同上
df.apply(func5, axis=1)     # 行 传入

函数向量化

def my_fun6(x, y):# 判断, 如果x的值是20, 就返回NaNif x == 20:         # 报错: x是向量, 20是标量, 向量和标量无法直接计算. return np.NAN# for i in x:#     if i == 20:         # 手动遍历, 就不报错了, 但是结果不是我们要的.#         return np.NAN# x代表第1列数据, y代表第2列数据return (x + y) / 2

在处理向量和标量时, 无法将向量直接和标量进行比较, 虽然手动用for循环遍历不会报错, 但是结果不对.

此时需要使用np.vectorize()函数, 将自定义函数向量化. 即: 如果遇到了向量, 则会逐个进行遍历, 获取标量并操作.

函数向量化的写法类似于装饰器的写法

# 定义函数, 接收df对象的两列数据, 计算每行的平均值@np.vectorize
@np.vectorize
def func6(x, y):# 判断, 如果x的值是20, 就返回NaNif x == 2:return np.NAN# x 第一列, y 第二列return (x + y) / 2
​
func6(df.a, df.b)
​
# 使用np.vectorize()函数, 将自定义函数进行向量化
func6 = np.vectorize(func6)
func6(df.a, df.b)

apply()结合lambda表达式

如果需求比较简单, 没有必要重新定义1个新的函数, 可以直接传入Lambda表达式.

# 1. 定义数据集.
df = pd.DataFrame({'a': [10, 20, 30], 'b': [20, 30, 40]})
df
#%%
# 2. 需求: 每个值 => 该值的平方.
def my_fun1(x):return x ** 2
​
df.apply(my_fun1)
#%%
# 3. 上述的需求可以用 Lambda表达式来完成.
df.apply(lambda x : x ** 2)
df.apply(lambda x : x.mean())
df.apply(lambda x : x.mean(), axis=0)   # 效果同上.
​
df.apply(lambda x : x.mean(), axis=1)   # 统计每行的平均值

apply()函数案例

加载数据

# 1. 加载数据集, 获取df对象.
train = pd.read_csv('data/titanic_train.csv')
train.head()
#%%
# 2. 查看数据集的 常用统计值.
train.info()
train.describe()
train
train.shape         # (891, 12)
len(train)          # 891 行数
train.size          # 891 * 12 = 10,772
​
len(train.Age)      # 891
train.Age.size      # 891

需求1:计算每列null总数, 缺失值占比, 非缺失值占比

# 1. 定义函数 count_missing(), 计算每列的缺失值总数
def count_missing(col):           # col => 每列数据, Series对象return col.isnull().sum()
​
# 2. 定义函数 prop_missing(), 计算每列的缺失值占比.
def prop_missing(col):# 缺失值占比 = 缺失值数量 / 该列总长度# return count_missing(col) / len(col)return count_missing(col) / col.size
​
# 3. 定义函数 prop_not_missing(), 计算每列的非缺失值占比.
def prop_not_missing(col):# 非缺失值占比 = 1 - 缺失值占比return 1 - prop_missing(col)
​
# 4. 调用上述的函数, 获取结果.
train.apply(count_missing)      # 获取每列的缺失值总数
train.apply(prop_missing)       # 获取每列的缺失值占比 
train.apply(prop_not_missing)   # 获取每列的非缺失值占比 

需求2: 计算泰坦尼克号数据中, 各年龄段总人数

# 方式1: 直接算每个年龄出现了多少次, 即: 每个年龄的总人数, 但是达不到我们要的效果.
train.Age.value_counts()
​
# 方式2:解题思路: 把年龄变成年龄段的值, 然后再进行统计.
# 1. 定义函数, 接收年龄, 将其转成年龄段. 
def cut_age(age):if 0 <= age < 18:return '未成年'elif 18 <= age < 40:return '青年'elif 40 <= age < 60:return '壮年'elif 60 <= age < 80:return '老年'else:return '未知'# 2. 把上述的函数, 作用于Age列, 得到新的列, 计算结果即可.
train.Age.apply(cut_age)
train.Age.apply(cut_age).value_counts()

需求3: 统计VIP 和 非VIP的客户总数

# VIP规则, 乘客船舱等级为1, 或者 名字中带有: 'Master', 'Sir', 'Dr'
def is_vip(rows):if rows.Pclass == 1 and ('Master' in rows.Name or 'Sir' in rows.Name or 'Dr' in rows.Name):return 'vip'else:return 'not_vip'
​
train.apply(is_vip, axis=1).value_counts()

二. 分组操作

分组 + 聚合

概述

  1. 在SQL中我们经常使用 GROUP BY 将某个字段,按不同的取值进行分组,

  2. 在pandas中也有groupby函数, 分组之后,每组都会有至少1条数据, 将这些数据进一步处理,

  3. 返回单个值的过程就是聚合,比如分组之后计算算术平均值, 或者分组之后计算频数,都属于聚

代码演示

导入数据
# 1. 读取数据, 获取df对象
df = pd.read_csv('data/gapminder.tsv', sep='\t')
df.head()
单变量
# 统计每年平均寿命
# 写法1
df.groupby('year')['lifeExp'].mean()
# 写法2
df.groupby('year').lifeExp.mean()
​
# 上述都是一步到位, 直接计算结果, 我们也可以手动计算. 
# 1. 我们先看看一共有多少个年
df.year.unique()  # 12个年份, 底层算 12 次即可, 这里我们就用 1952年举例.
​
# 2. 获取1952年所有的数据, 计算平均寿命
df[df['year'] == 1952].lifeExp.mean()
df[df.year == 1952].lifeExp.mean()  # 效果同上.
​
​
# 统计各大洲平均寿命
# 写法1
df.groupby('continent')['lifeExp'].mean()
​
# 分组之后, 也可以用 describe()同时计算多个统计量.
df.groupby('continent')['lifeExp'].describe()
​
# 写法2
df.groupby('continent')['lifeExp'].mean()
df.groupby('continent')['lifeExp'].agg('mean')  # 这里的mean是: pandas的函数
# df.groupby('continent')['lifeExp'].agg(np.mean)  # 这里的mean是: Numpy的函数
​
df.groupby('continent')['lifeExp'].aggregate('mean')  # 效果同上.
多变量agg
# 需求: 统计各个大洲 平均寿命, 人口的中位数, 最大GDP
df.groupby('continent').agg({'lifeExp': 'mean', 'pop': 'median', 'gdpPercap': 'max'})
df.groupby('continent').aggregate({'lifeExp': 'mean', 'pop': 'median', 'gdpPercap': 'max'})  # 效果同上
​
# 语法糖, 如果聚合函数一样, 则可以简写成如下操作, 例如: 各个大洲平均寿命, 平均人口, 平均GDP
df.groupby('continent').agg({'lifeExp': 'mean', 'pop': 'mean', 'gdpPercap': 'mean'})
df.groupby('continent')[['lifeExp', 'pop', 'gdpPercap']].mean()
自定义函数聚合运算
# 需求: 计算各个大洲的平均寿命
# 方式1: 使用Pandas的mean()函数.
df.groupby('continent').lifeExp.mean()
df.groupby('continent').lifeExp.agg('mean')
​
# 方式2: 使用自定义函数, 计算平均值.
# 1. 定义函数, 计算某列的平均值.
def my_mean(col):# 某列平均值 = 该列元素和 / 该列元素个数# return col.sum() / len(col)return col.sum() / col.size
​
​
# 2. 调用函数.
df.groupby('continent').lifeExp.apply(my_mean)
df.groupby('continent').lifeExp.agg(my_mean)

分组 + 转换

概述

  1. transform 需要把DataFrame中的值传递给一个函数, 而后由该函数"转换"数据。

  2. 即: aggregate(聚合) 返回单个聚合值,但transform 不会减少数据量。

  3. 分组转换跟SQL中的窗口函数中的聚合函数作用一样。可以把每一条数据和这个数据所属的组的一个聚合值在放在一起, 可以根据需求进行相应计算。

代码演示

计算x的z-score分数

计算x的 z-score分数, 也叫: 标准分数, 公式为: (x - x_mean) / x_std

# 1. 查看数据源
df
#%%
# 2. 定义函数, 计算某列的 z-score分数.
def my_zscore(col):return (col - col.mean()) / col.std()  # (列值 - 平均值) / 标准差
​
​
# 3. 调用上述的格式.
df.groupby('year').lifeExp.apply(my_zscore)  # 1704条
​
#%%
# 4. 查看原始df的数据集总数.
df  # 结论: 分组 + 转换处理后, 数据集总数不变.
分组填充
# 需求: 读取文件(小票信息), 获取df对象. 其中有1列 total_bill 表示总消费. 随机抽取4个缺失值, 然后进行填充. 
# 填充方式: 每个组的平均值. 即: 如果是Male => 就用 Male列的平均值填充, 如果是Female => Female列的平均值填充.
# 1. 读取文件, 获取DataFrame对象
df = pd.read_csv('data/tips.csv')
df
#%%
# 2. 抽样方式, 从上述的df对象中, 随机抽取10条数据. 
# tips_10 = df.sample(10)     # 这里的10表示随机抽取 10 条数据.
# random_state: 随机种子, 只要种子一样, 每次抽取的数值都是一样的. 
tips_10 = df.sample(10, random_state=21)
tips_10
#%%
# 3. 随机的从上述的10条数据中, 抽取4行数据, 设置他们的 total_bill(消费总金额) 为 NaN
# 写法1: 每次固定 这四条数据 的 total_bill为 空值.
# tips_10.loc[[173, 240, 243, 175], 'total_bill'] = np.NaN
​
# 写法2: 每次随机4条数据, 设置它们的 total_bill为 空值.
# np.random.permutation()解释: 随机打乱索引值, 并返回打乱后的索引值.
# np.random.permutation()[索引数] 打乱索引顺序, 返回固定索引数
tips_10.loc[np.random.permutation(tips_10.index)[:4], 'total_bill'] = np.NaN
tips_10
#%%
# 4. 分别计算 Male 和 Female 的平均消费金额, 用于填充对应组的 缺失值.
# 思路1: 直接用 整体的 总消费金额的 平均值 填充.
tips_10.fillna(tips_10.total_bill.mean())
#%%
# 思路2: 自定义函数, 计算每组的平均消费金额, 进行填充
def my_mean(col):# return col.sum() / col.size     # 某列总金额 / 某列元素个数,  这种写法会导致: 本组所有的数据都会被新值覆盖.return col.fillna(col.mean())     # 用该列的平均值, 来填充该列的缺失值, 其它不变.
​
# 调用上述函数, 实现: 分组填充, 即: 给我N条, 处理后, 还是返回N条数据.
# tips_10.groupby('sex').total_bill.apply(my_mean)      # n => 1  聚合的效果.
tips_10.groupby('sex').total_bill.transform(my_mean)    # n => n  类似于: MySQL的窗口函数的效果.
​
# df.groupby('sex').total_bill.transform(my_mean)    # n => n  类似于: MySQL的窗口函数的效果.

分组 + 过滤

概述

  1. 使用groupby方法还可以过滤数据

  2. 调用filter 方法,传入一个返回布尔值的函数,返回False的数据会被过滤掉

代码演示

# 1. 查看源数据
df
#%%
# 2. 查看用餐人数情况.
tmp_df = df.groupby('size', as_index=False).total_bill.count()
tmp_df.columns = ['size', 'count']
tmp_df
​
df.size     # 这样写, 会把 size当做 属性, 而不是 size列.
df['size'].value_counts()
#%%
# 3. 我们发现, 在所有的 消费记录中, 就餐人数 在 1, 5, 6个人的消费次数相对较少, 我们可以过滤掉这部分的数据
tmp_df = df.groupby('size').filter(lambda x : x['size'].count() > 30)
tmp_df
#%%
# 4. 验证上述筛选后的数据, size列只有 2, 3, 4 这三种就餐人数的情况.
tmp_df['size'].value_counts()
#%%
# 5. 上述代码的合并版, 一行搞定.
df.groupby('size').filter(lambda x : x['size'].count() > 30)['size'].value_counts()
​
# 另外一种筛选的方式, 可以基于: query()函数 + 筛选条件, 找出要的合法的数据. 
df.query('size == 2 or size == 3 or size == 4')
df.query('size in [2, 3, 4]')

DataFrameGroupby对象

概述

调用了groupby方法之后, 就会返回一个DataFrameGroupby对象

代码演示

# 1. 从小费数据中, 随机的获取10条数据.
tips_10 = pd.read_csv('data/tips.csv').sample(10, random_state=21)
tips_10
#%%
# 2. 演示 根据性别分组, 获取: 分组对象.
grouped = tips_10.groupby('sex')      # DataFrameGroupBy 对象
grouped
#%%
# 3. 遍历上述的分组对象, 看看每个分组都是啥(即: 每个分组的数据)
for sex_group in grouped:print(sex_group)        # sex_group: 就是具体的每个分组的数据. 
#%%
# 4. 获取指定的某个分组的数据.
grouped.get_group('Male')
grouped.get_group('Female')
#%%
# 5. 需求: 使用groupby() 按 性别 和 用餐时间分组, 计算小费数据的平均值. 
df.groupby(['sex', 'time']).tip.mean()
#%%
# 6. 分组对象不能使用 0 索引获取数据
grouped
# grouped[0]      # 分组对象不能使用 0 索引获取数据, 要获取数据, 可以通过  grouped.get_group() 函数实现
grouped.get_group(('Male'))


http://www.mrgr.cn/news/33617.html

相关文章:

  • C# Winform--SerialPort串口通讯(ASCII码发送)
  • 七大经典基于比较排序算法【Java实现】
  • 基于yolov8、yolov5的番茄成熟度检测识别系统(含UI界面、训练好的模型、Python代码、数据集)
  • Spring 解析xml中的 BeanDefination 大概过程
  • 排序算法 -插入排序
  • 丹摩征文活动|Faster-Rcnn-训练与测试详细教程
  • 【掘金量化使用技巧】用日线合成长周期k线
  • golang学习笔记8-运算符与输入
  • 使用Okhttp-服务器不支持缓存的解决办法
  • 百度智能云API调用
  • AI大模型基础概念
  • AD19基础应用技巧:交叉选择/跳转到器件/镜像粘贴/元器件矩形区域排列/选择过滤器/捕捉对象等设置
  • 插件化换肤的优缺点分别是什么
  • 【练习16】求最小公倍数
  • kindle云端同步
  • 项目扩展四:交换机和队列的特性完善【自动删除与队列独占的实现】
  • Java是怎么处理死锁的
  • hive-拉链表
  • LeetCode讲解篇之238. 除自身以外数组的乘积
  • torch模型量化方法总结
  • HarmonyOS元服务与卡片
  • Spring AOP - 配置文件方式实现
  • Linux进阶命令-rsync daemon
  • 【通讯协议】S32K142芯片——LIN通信的学习和配置
  • 解决docker指令卡住的场景之一
  • KTH5702系列 低功耗、高精度 2D 霍尔旋转位置传感器 车规AEC-Q100