当前位置: 首页 > news >正文

torch模型量化方法总结

0.概述

模型训练完成后的参数为float或double类型,而装机(比如车载)后推理预测时,通常都会预先定点(量化)为int类型参数,相应的推理的精度会有少量下降,但不构成明显性能下降,带来的结果是板端部署的可能性,推理的latency明显降低,本文对torch常用的量化方法进行总结作为记录。

1.模型量化的作用

量化是指将信号的连续取值近似为有限多个离散值的过程。可理解成一种信息压缩的方法。在计算机系统上考虑这个概念,一般用“低比特”来表示。也有人称量化为“定点化”,但是严格来讲所表示的范围是缩小的。定点化特指scale为2的幂次的线性量化,是一种更加实用的量化方法。

卷积神经网络具有很好的精度,甚至在一些任务上比如人脸识别、图像分类,已经超越了人类精度。但其缺点也比较明显,具有较大的参数量,计算量,以及内存占用。而模型量化可以缓解现有卷积神经网络参数量大、计算量大、内存占用多等问题,具有为神经网络压缩参数、提升速度、降低内存占用等“潜在”优势。为什么“潜在”是加引号的呢?因为想同时达到这三个特性并不容易,在实际应用过程中存在诸多限制和前提条件。

另外,由于模型量化是一种近似算法方法,精度损失是一个严峻的问题,大部分的研究都在关注这一问题。作为一个在公司支撑很多业务线的团队,我们会在关注精度的同时,注重部署最终的速度和资源占用情况。

1.1 压缩参数

1.2 提升速度

什么样的量化方法可以带来潜在、可落地的速度提升呢?我们总结需要满足两个条件:

1、量化数值的计算在部署硬件上的峰值性能更高 。

2、量化算法引入的额外计算(overhead)少 。

要准确理解上述条件,需要有一定的高性能计算基础知识,限于篇幅就不展开讨论了。现直接给出如下结论:已知提速概率较大的量化方法主要有如下三类,

1、二值化,其可以用简单的位运算来同时计算大量的数。对比从nvdia gpu到x86平台,1bit计算分别有5到128倍的理论性能提升。且其只会引入一个额外的量化操作,该操作可以享受到SIMD(单指令多数据流)的加速收益。

2、线性量化,又可细分为非对称,对称和ristretto几种。在nvdia gpu,x86和arm平台上,均支持8bit的计算,效率提升从1倍到16倍不等,其中tensor core甚至支持4bit计算,这也是非常有潜力的方向。由于线性量化引入的额外量化/反量化计算都是标准的向量操作,也可以使用SIMD进行加速,带来的额外计算耗时不大。

3、对数量化,一个比较特殊的量化方法。可以想象一下,两个同底的幂指数进行相乘,那么等价于其指数相加,降低了计算强度。同时加法也被转变为索引计算。但没有看到有在三大平台上实现对数量化的加速库,可能其实现的加速效果不明显。只有一些专用芯片上使用了对数量化。

1.3 降低内存

2. 量化的实现方法

pytorch有3种量化模式,包括Eager quantization mode、FX quantization mode以及PyTorch 2 Export Quantization(pytrch2.1新增),每种模式都支持多种量化方式,包括动态量化、静态量化以及量化感知训练。

2.1动态量化(Dynamic Quanti


http://www.mrgr.cn/news/33603.html

相关文章:

  • 华为大咖说 | 浅谈智能运维技术
  • 使用控制台对C语言文件的编译执行
  • 数学建模模型算法-Python实现
  • SQLite Where 子句
  • WebStorm 如何调试 Vue 项目
  • 利用OpenAI进行测试需求分析——从电商网站需求到测试用例的生成
  • HarmonyOS元服务与卡片
  • Spring AOP - 配置文件方式实现
  • Linux进阶命令-rsync daemon
  • 【通讯协议】S32K142芯片——LIN通信的学习和配置
  • 解决docker指令卡住的场景之一
  • KTH5702系列 低功耗、高精度 2D 霍尔旋转位置传感器 车规AEC-Q100
  • 01 基础request
  • linux之进程信号
  • 【网络安全】依赖混淆漏洞实现RCE
  • java Nio的应用
  • OpenCV特征检测(9)检测图像中直线的函数HoughLines()的使用
  • 命名管道详解
  • 用最容易理解的方法,实现LRU、LFU算法
  • C#如何把写好的类编译成dll文件
  • ArcGIS核密度分析(栅格处理范围与掩膜分析)
  • NLP:命名实体识别及案例(Bert微调)
  • Redis:常用命令总结
  • 【机器学习】——线性回归(自我监督学习)
  • 基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
  • Python画笔案例-058 绘制单击画酷炫彩盘