当前位置: 首页 > news >正文

智源推出下一代检索增强大模型框架MemoRAG

北京智源人工智能研究院与中国人民大学高瓴人工智能学院联合发布了一款创新的人工智能模型框架——MemoRAG。该框架基于长期记忆,旨在推动检索增强生成(RAG)技术的发展,使其能够处理更复杂的任务,而不仅限于简单的问答。

MemoRAG采用了一种新颖的模式,通过“基于记忆的线索生成——基于线索指引的信息获取——基于检索片段的内容生成”的流程,实现了在复杂场景下精准获取信息的能力。这一技术特别适用于司法、医疗、教育和代码等知识密集型领域的任务,展示了极高的潜力。

在这里插入图片描述

MemoRAG的核心优势在于其全局记忆能力,能够处理长达百万词的单上下文数据,这为处理大量数据提供了强有力的支持。此外,MemoRAG还具备高度的可优化性和灵活性,能够快速适应新任务并实现性能的最优化。它还能从全局记忆中生成精确的上下文线索,提高问题解答的准确性,并挖掘数据中的深层次洞见。

为了支持MemoRAG的进一步研究与应用,项目团队已开源了两种记忆模型,并提供了使用指南和实验结果。实验显示,MemoRAG在多个基准测试中的表现均优于基线模型。智源研究院表示,尽管MemoRAG项目仍处于初期阶段,但他们期待社区的反馈,并将持续优化模型的轻量化、记忆机制的多样性以及其在中文语料中的表现。

在这里插入图片描述

技术报告:https://arxiv.org/pdf/2409.05591

Repo:https://github.com/qhjqhj00/MemoRAG

感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。期望未来能为大家带来更多有价值的内容,请多多关注我的动态!


http://www.mrgr.cn/news/29940.html

相关文章:

  • 创新体验触手可及 紫光展锐携手影目科技推出AI眼镜开放平台
  • 第二节 OSI-物理层
  • React 守卫路由
  • MySQL核心业务大表归档过程
  • Python之魔术方法笔记
  • day12:版本控制器
  • Perl 进程管理
  • Exchange Online 计划 1部署方案
  • 高效开发,从暗藏玄机的文件系统开始—合宙Air201资产定位模组LuatOS
  • 每日学习一个数据结构-红黑树
  • Python面试宝典第50题:分割等和子集
  • vue的插槽
  • 11 - TCPClient实验
  • 深入理解Python中的数据结构:元组(Tuple)
  • DevEco Profiler调优工具(一)
  • XTuner 微调个人小助手认知任务
  • 读构建可扩展分布式系统:方法与实践08微服务
  • 关于嵌入式硬件需要了解的基础知识
  • Vue学习记录之四(watch侦听器和watchEffect高级侦听器)
  • 问:Java中的多线程有哪些实现方式?
  • 【新手上路】衡石分析平台使用手册-租户管理
  • 如何全局修改Git的邮箱、用户名?
  • 比特币10年价格数据(2014-2024)分析(进阶2_时间序列分析)
  • windows10下tomcat安装及配置教程
  • Linux系统性能调优技巧详解
  • 【Linux进程控制】进程程序替换