当前位置: 首页 > news >正文

Python面试宝典第50题:分割等和子集

题目

        给你一个只包含正整数的非空数组nums,请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

        示例 1:

输入:nums = [1, 5, 11, 5]
输出:True
解释:数组可以分割成[1, 5, 5]和[11]。

        示例 2:

输入:nums = [1, 2, 3, 5]
输出:False
解释:数组不能分割成两个元素和相等的子集。

备忘录法

        备忘录法的基本思想是:在递归过程中缓存已计算的结果,避免重复计算相同子问题。这样可以显著减少递归树的分支,提高算法效率。使用备忘录法求解本题的主要步骤如下。

        1、定义递归函数can_partition_helper。该函数接受四个参数:数组nums、目标和target、当前索引index、备忘录memo。其中,备忘录memo用于存储已计算过的子问题的结果。

        2、基本情况。

        (1)如果target为0,则表示找到了一个子集,返回True。

        (2)如果target小于0,或者index超出了数组范围,则表示无法找到合适的子集,返回False。

        (3)如果target和index的组合已经存在于备忘录memo中,则直接返回备忘录中的结果。

        3、进行递归。

        (1)对于每个元素nums[index],有两种选择:包含或不包含该元素。

        (2)如果包含nums[index],则递归调用can_partition_helper函数,计算剩余元素是否可以构成目标和target - nums[index]。

        (3)如果不包含nums[index],则递归调用can_partition_helper 函数,计算剩余元素是否可以构成目标和target。

        (4)如果任一递归路径返回True,则更新备忘录memo,并返回True。

        4、如果所有递归路径都返回False,则表示无法分割成两个子集,返回False。

        根据上面的算法步骤,我们可以得出下面的示例代码。

def partition_equal_subset_sum_by_memoization(nums):total_sum = sum(nums)# 如果总和不是偶数,则无法分割成两个子集if total_sum % 2 != 0:return Falsetarget = total_sum // 2memo = {}def can_partition_helper(nums, target, index):# 如果target为0,则表示找到了一个子集if target == 0:return True# 如果target小于0,或者index超出了数组范围,则表示无法找到合适的子集if target < 0 or index >= len(nums):return False# 如果target和index的组合已经存在于备忘录中,则直接返回备忘录中的结果if (target, index) in memo:return memo[(target, index)]# 包含nums[index]include = can_partition_helper(nums, target - nums[index], index + 1)# 不包含nums[index]exclude = can_partition_helper(nums, target, index + 1)# 更新备忘录memomemo[(target, index)] = include or exclude# 返回结果return include or excludereturn can_partition_helper(nums, target, 0)nums = [1, 5, 11, 5]
print(partition_equal_subset_sum_by_memoization(nums))nums = [1, 2, 3, 5]
print(partition_equal_subset_sum_by_memoization(nums))

动态规划法

        使用动态规划法时,我们需要构建一个一维数组dp来存储达到每个子集和的可能性。数组dp的索引表示子集和,dp[i]表示能否通过选择数组中的元素达到和为i的子集。使用动态规划法求解本题的主要步骤如下。

        1、初始化。计算数组nums的总和total_sum,如果total_sum不是偶数,则无法分割成两个子集,直接返回False。否则,计算目标和target为total_sum // 2。

        2、构建DP数组。创建一个长度为target + 1的布尔型数组dp,其中dp[0]初始化为True,表示总和为0的子集始终存在,其他位置初始化为False。

        3、填充DP数组。对于每个元素num,从target到num的每个子集和i,更新dp[i]为dp[i]或dp[i - num]。

        4、返回dp[target],表示是否存在和为目标和target的子集。

        根据上面的算法步骤,我们可以得出下面的示例代码。

def partition_equal_subset_sum_by_dp(nums):total_sum = sum(nums)# 如果总和不是偶数,则无法分割成两个子集if total_sum % 2 != 0:return Falsetarget = total_sum // 2# 创建一个长度为target + 1的布尔型数组dp = [False] * (target + 1)dp[0] = True# 填充DP数组for num in nums:# 从target到num的每个子集和ifor i in range(target, num - 1, -1):# 更新dp[i]dp[i] = dp[i] or dp[i - num]return dp[target]nums = [1, 5, 11, 5]
print(partition_equal_subset_sum_by_dp(nums))nums = [1, 2, 3, 5]
print(partition_equal_subset_sum_by_dp(nums))

总结

        使用备忘录法时,每个子问题只被计算一次,子问题的数量与数组nums的长度、目标和target成正比。总的时间复杂度为O(N * target),其中N是数组nums的长度,target是目标和的一半。备忘录的最大大小为N * target,故其空间复杂度为O(N * target)。相比纯递归法,备忘录法通过避免重复计算相同的子问题,大大提升了效率。


http://www.mrgr.cn/news/29935.html

相关文章:

  • 源码解析-Spring Eureka
  • leetcode 148. 排序链表 中等
  • 【AI工作流】FastGPT - 深入解析FastGPT工作流编排:从基础到高级应用的全面指南
  • CentOS AppStream 8 手动更新 yum源
  • 施耐德电气40GB数据失窃,遭黑客勒索
  • CSRF详解
  • vue的插槽
  • 11 - TCPClient实验
  • 深入理解Python中的数据结构:元组(Tuple)
  • DevEco Profiler调优工具(一)
  • XTuner 微调个人小助手认知任务
  • 读构建可扩展分布式系统:方法与实践08微服务
  • 关于嵌入式硬件需要了解的基础知识
  • Vue学习记录之四(watch侦听器和watchEffect高级侦听器)
  • 问:Java中的多线程有哪些实现方式?
  • 【新手上路】衡石分析平台使用手册-租户管理
  • 如何全局修改Git的邮箱、用户名?
  • 比特币10年价格数据(2014-2024)分析(进阶2_时间序列分析)
  • windows10下tomcat安装及配置教程
  • Linux系统性能调优技巧详解
  • 【Linux进程控制】进程程序替换
  • C#|.net core 基础 - 值传递 vs 引用传递
  • vue3打包配置 vite、router、nginx配置
  • C语言 | Leetcode C语言题解之第415题字符串相加
  • 0基础学习HTML(四)HTML基础
  • Java | Leetcode Java题解之第416题分割等和子集