当前位置: 首页 > news >正文

使用SVM对心脏数据是否患病进行分类预测

作者简介

杜嘉宝,男,西安工程大学电子信息学院,2024级研究生
研究方向:变压器故障预警与检测
电子邮件:djb857497378@gmail.com
王子谦,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:1523018430@qq.com

在这篇文章中,我将分享如何使用支持向量机(SVM)算法对心脏病数据进行分类。整个流程包括数据加载、预处理、SMOTE过采样、PCA降维、超参数调优、灰狼优化算法的使用等。通过这篇文章,希望你能够了解如何通过集成不同技术实现更好的分类效果。

1. 安装包的准备

首先,你需要安装必要的Python库。以下是一些主要的库:
pip install numpy pandas scikit-learn imbalanced-learn matplotlib
这些库提供了SVM、SMOTE过采样、PCA降维以及其他常用的数据处理工具。

2. 数据集介绍

本次我们使用的是UCI心脏病数据集,包含多种与心脏病相关的特征,如年龄、性别、血压、胆固醇水平等。数据集中的目标变量target有五个不同的类别,表示不同程度的心脏病。
通过加载数据,我们将其分为特征集(X)和目标值(y),并进行清洗(将?替换为0)。

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data"
columns = ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target"]
features, target = load_data(url, columns)

3. SVM算法介绍

支持向量机(SVM)是一种强大的分类算法,尤其适合处理高维数据。它的目标是寻找一个超平面,将不同类别的样本分开,并且最大化类别之间的间隔。在这篇文章中,我们使用SVC(支持向量分类)来实现心脏病数据的分类。

from sklearn.svm import SVC
svm_clf = SVC(kernel='rbf', C=1.0, gamma=0.1)
svm_clf.fit(X_train, y_train)

4. SMOTE算法介绍

在心脏病数据集中,类别不平衡问题较为严重。为了解决这个问题,我们使用了SMOTE(Synthetic Minority Over-sampling Technique)算法,通过生成合成样本来平衡各个类别。

from imblearn.over_sampling import SMOTE
X_resampled, y_resampled = smote(X_train, y_train, sampling_strategy={2: 55, 3: 55, 4: 55})

5. GridSearch算法

为了寻找SVM模型的最佳超参数,我们使用了GridSearchCV进行超参数搜索。通过在不同的C和gamma值之间进行网格搜索,找出最优的组合。

from sklearn.model_selection import GridSearchCV
gridsearch(X_train, y_train, X_test, y_test)

6. PCA算法介绍

主成分分析(PCA)是降维的常用方法,可以在保留数据大部分信息的情况下,减少数据的维度。在本次任务中,我们使用PCA将数据维度降到95%的信息量。

from sklearn.decomposition import PCA
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)

7. 灰狼优化算法介绍

灰狼优化算法(Grey Wolf Optimizer, GWO)是一种模拟灰狼捕猎行为的优化算法。在这里,我们使用灰狼优化算法来寻找SVM模型的最佳超参数C和gamma。

def grey_wolf_optimizer(...):# 代码实现见下文return alpha_pos, alpha_score

灰狼优化算法通过模拟灰狼群体的领导行为,帮助我们在搜索空间中找到最优解。

8. 实现流程

8.1 数据加载与预处理

首先,加载数据集,并进行数据清洗。然后,使用SMOTE算法处理类别不平衡问题。

(X_train, X_test, y_train, y_test) = train_test_split(features, target, test_size=0.3, random_state=1, stratify=target)
X_train, y_train = smote(X_train, y_train, sampling_strategy={2: 38, 3: 38, 4: 38})

8.2 数据标准化与PCA降维

使用StandardScaler对数据进行标准化处理,并使用PCA降维。

X_train, X_test = scaler(X_train, X_test)
pca = PCA(n_components=0.95)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)

8.3 模型训练与优化

使用SVM进行训练,并通过灰狼优化算法调整超参数。

print(grey_wolf_optimizer(0, 100, 10000, 100, 2, X_train, y_train, X_test, y_test))

8.4 可视化

使用Matplotlib进行数据可视化,展示PCA降维后的数据分布。

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X_train[:, 0], X_train[:, 1], X_train[:, 2], c=y_train, cmap='viridis', alpha=0.7)

9. 源代码

Utils.py
import numpy as np
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn.decomposition import PCAdef scaler(x_train, x_test):standard_transform = StandardScaler()return standard_transform.fit_transform(x_train), standard_transform.fit_transform(x_test)def gridsearch(x_train, y_train, x_test, y_test):C = np.linspace(0,100,100)gamma = np.linspace(0,100,100)param_grid = {'C' : C,'gamma':gamma,'kernel':['rbf','poly']}svm_clf = SVC()grid_search = GridSearchCV(estimator=svm_clf,param_grid=param_grid,n_jobs=-1,cv=5,scoring='accuracy')grid_search.fit(x_train,y_train)print('网格中最优参数:',grid_search.best_params_)print('测试集的准确率:',grid_search.score(x_test,y_test))def apply_pca(data, n_components):# 标准化数据,使其均值为0,方差为1pca_scaler = StandardScaler()scaled_data = pca_scaler.fit_transform(data)# 进行 PCA 降维pca = PCA(n_components=n_components)reduced_data = pca.fit_transform(scaled_data)# 获取解释方差比例explained_variance = pca.explained_variance_ratio_return reduced_data, explained_variancedef grey_wolf_optimizer(lb, ub, n_wolves, max_iter, dim, x_train, y_train, x_test, y_test):# 定义目标函数def objective_function(C, gamma):clf = SVC(kernel='rbf', C=C, gamma=gamma, random_state=1)clf.fit(x_train, y_train)return 1 - clf.score(x_test, y_test)# 初始化狼群wolves = np.random.uniform(lb, ub, (n_wolves, dim))# 初始化 alpha、beta、delta 位置及适应度值alpha_pos = np.zeros(dim)alpha_score = float('inf')beta_pos = np.zeros(dim)beta_score = float('inf')delta_pos = np.zeros(dim)delta_score = float('inf')# 迭代优化for t in range(max_iter):# 计算当前狼群的适应度for i in range(n_wolves):wolves[i, :] = np.clip(wolves[i, :], lb, ub)  # 约束搜索范围C = max(float(wolves[i, 0]), 1e-3)gamma = max(float(wolves[i, 1]),1e-3)fitness = objective_function(C, gamma)# 更新 alpha、beta、deltaif fitness < alpha_score:delta_score, delta_pos = beta_score, beta_pos.copy()beta_score, beta_pos = alpha_score, alpha_pos.copy()alpha_score, alpha_pos = fitness, wolves[i, :].copy()elif fitness < beta_score:delta_score, delta_pos = beta_score, beta_pos.copy()beta_score, beta_pos = fitness, wolves[i, :].copy()elif fitness < delta_score:delta_score, delta_pos = fitness, wolves[i, :].copy()# 计算系数 aa = 2 - t * (2 / max_iter)# 更新狼群位置for i in range(n_wolves):r1, r2 = np.random.rand(dim), np.random.rand(dim)A1 = 2 * a * r1 - aC1 = 2 * r2D_alpha = abs(C1 * alpha_pos - wolves[i, :])X1 = alpha_pos - A1 * D_alphar1, r2 = np.random.rand(dim), np.random.rand(dim)A2 = 2 * a * r1 - aC2 = 2 * r2D_beta = abs(C2 * beta_pos - wolves[i, :])X2 = beta_pos - A2 * D_betar1, r2 = np.random.rand(dim), np.random.rand(dim)A3 = 2 * a * r1 - aC3 = 2 * r2D_delta = abs(C3 * delta_pos - wolves[i, :])X3 = delta_pos - A3 * D_delta# 计算新位置wolves[i, :] = (X1 + X2 + X3) / 3print(f"Iteration {t+1}: Best C={alpha_pos[0]}, Best gamma={alpha_pos[1]}, Best fitness={1-alpha_score}")return alpha_pos, alpha_score
load_data.pyimport pandas as pd
import numpy as  np
from imblearn.over_sampling import SMOTEdef load_data(url, columns):# 读取数据df = pd.read_csv(url, names=columns)df_cleaned = df.replace('?', 0)X = df_cleaned.iloc[:, :-1]  # 特征y = df_cleaned.iloc[:, -1]   # 目标值return X, ydef smote(x, y, sampling_strategy, random_state=1, k_neighbors=1):smote = SMOTE(random_state=random_state, sampling_strategy=sampling_strategy, k_neighbors=k_neighbors)x_resampled, y_resampled = smote.fit_resample(x, y)return x_resampled, y_resampledif __name__ == '__main__':url = "https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data"columns = ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach","exang", "oldpeak", "slope", "ca", "thal", "target"]features, target = load_data(url, columns)labels, count = np.unique(target, return_counts=True)print('labels', labels, '  ', 'count:', count)sampling_strategy = {2: 55, 3: 55, 4: 55}smote = SMOTE(random_state=42, sampling_strategy=sampling_strategy, k_neighbors=1)features_resampled, target_resampled = smote.fit_resample(features, target)labels, count = np.unique(target_resampled, return_counts=True)
print('labels', labels, '  ', 'count:', count)train.py
from sklearn.model_selection import train_test_split
from load_data import load_data, smote
from utils import scaler, gridsearch,grey_wolf_optimizer
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCAurl = "https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data"
columns = ["age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target"]
features, target = load_data(url, columns)
(X_train,X_test,y_train,y_test) = train_test_split(features, target,test_size=0.3,random_state=1,stratify=target)
labels, count = np.unique(y_train, return_counts=True)
print('labels', labels, '  ', 'count:', count)
sampling_strategy = {2: 38, 3: 38, 4: 38}
X_train, y_train = smote(X_train, y_train,sampling_strategy)
labels, count = np.unique(y_train, return_counts=True)
print('labels', labels, '  ', 'count:', count)
X_train, X_test = scaler(X_train,X_test)
pca = PCA(n_components=0.95)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X_train[:, 0], X_train[:, 1], X_train[:, 2], c=y_train, cmap='viridis', alpha=0.7)ax.set_xlabel("Principal Component 1")
ax.set_ylabel("Principal Component 2")
ax.set_zlabel("Principal Component 3")
ax.set_title("PCA 3D Scatter Plot")
plt.show()
print(grey_wolf_optimizer(0,100,10000,100,2,X_train,y_train,X_test,y_test))

http://www.mrgr.cn/news/98341.html

相关文章:

  • UNet深度学习实战遥感航拍图像语义分割
  • 科研软件分享
  • deepin使用autokey添加微信快捷键一键显隐ctrl+alt+w
  • Linux内核中struct net_protocol的early_demux字段解析
  • HarmonyOS 第2章 Ability的开发,鸿蒙HarmonyOS 应用开发入门
  • 7.thinkphp的路由
  • 观察者模式(行为模式)
  • Activiti(六)- 启动、挂起、激活,查询及删除流程实例
  • 关于 驱动开发方法 的详细分类、核心特点及对比分析,涵盖 TDD、MDD、BDD、DDD、ATDD、FDD、PDD 等主流方法
  • EMMOE:开放环境中具身移动操控的综合基准
  • C 语言中经典的数据结构
  • 【数据结构_5】链表(模拟实现以及leetcode上链表相关的题目)
  • 一种基于学习的多尺度方法及其在非弹性碰撞问题中的应用·
  • 【深度学习】PyTorch实现VGG16模型及网络层数学原理
  • Python 数组里找出子超集
  • 【数据结构_4下篇】链表
  • 【数据结构_6上篇】有关链表的oj题
  • 14、nRF52xx蓝牙学习(串口 UART 和 UARTE 外设应用)
  • 【数据结构_4】顺序表
  • linux多线(进)程编程——(6)共享内存