当前位置: 首页 > news >正文

Flinksql--订单宽表

参考: https://chbxw.blog.csdn.net/article/details/115078261 (datastream 实现)

一、ODS

模拟订单表及订单明细表

CREATE TABLE orders (order_id STRING,user_id STRING,order_time TIMESTAMP(3),-- 定义事件时间及 Watermark(允许5秒乱序)WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH ('connector' = 'kafka','topic' = 'orders','properties.bootstrap.servers' = 'chb1:9092',-- 如果source被多个任务使用,不在定义时指定group.id-- 通过hint指定  OPTIONS('properties.group.id'='test_group2')  注意是group.id 是点不是下划线-- 'properties.group.id' = 'flink-sql-group-orders',  -- 消费者组 ID'scan.startup.mode' = 'earliest-offset','format' = 'json'
);CREATE TABLE order_details (detail_id STRING,order_id STRING,product_id STRING,price DECIMAL(10,2),quantity INT,detail_time TIMESTAMP(3),-- 定义事件时间及 Watermark(允许5秒乱序)WATERMARK FOR detail_time AS detail_time - INTERVAL '5' SECOND
) WITH ('connector' = 'kafka','topic' = 'order_details','properties.bootstrap.servers' = 'chb1:9092',-- 'properties.group.id' = 'flink-sql-group-order_details',  -- 消费者组 ID'scan.startup.mode' = 'earliest-offset','format' = 'json'
);-- 造数据
insert into order_details values ('d001', 'o001', 'car', 5000, 1, now());
insert into orders values('o001', 'u001', now());insert into orders values('o003', 'u003', now());insert into order_details values ('d003', 'o003', 'water', 2, 12, now());
insert into order_details values ('d003', 'o003', 'food', 50, 3, now());

二、DWD 订单和订单明细关联


-- sink
CREATE TABLE dwd_trd_order (detail_id STRING,order_id STRING,product_id STRING,price DECIMAL(10,2),quantity INT,detail_time TIMESTAMP(3),user_id STRING,order_time TIMESTAMP(3),-- 定义事件时间及 Watermark(允许5秒乱序)WATERMARK FOR detail_time AS detail_time - INTERVAL '5' SECOND
) WITH ('connector' = 'kafka','topic' = 'dwd_trd_order','properties.bootstrap.servers' = 'chb1:9092','scan.startup.mode' = 'earliest-offset','format' = 'json'
);insert into dwd_trd_order
SELECT d.detail_id,o.order_id,d.product_id,d.price,d.quantity,d.detail_time,user_id,order_time
FROM orders o
JOIN order_details d 
ON o.order_id = d.order_id
AND d.detail_time BETWEEN o.order_time AND o.order_time + INTERVAL '10' MINUTE;

报错:

[ERROR] Could not execute SQL statement. Reason:
org.apache.flink.table.api.TableException: The query contains more than one rowtime attribute column [detail_time, order_time] for writing into table 'default_catalog.default_database.dwd_trd_order'.
Please select the column that should be used as the event-time timestamp for the table sink by casting all other columns to regular TIMESTAMP or TIMESTAMP_LTZ.

在 Flink SQL 中,每个表只能有一个 行时间属性(rowtime attribute) 用于定义事件时间(Event Time)。当写入目标表时,若查询结果包含多个行时间属性字段(如 order_timedetail_time),会导致冲突。以下是解决方案:


1. 问题定位

错误信息表明目标表 dwd_trd_order 在写入时检测到多个行时间属性字段(detail_timeorder_time)。
根本原因是:JOIN 后的结果保留了双表的事件时间字段,且未被转换为普通时间戳


2. 解决方案

方案一:仅保留一个行时间属性

在查询中选择一个时间字段作为事件时间,将其他时间字段转为普通 TIMESTAMP 类型。
假设目标表 dwd_trd_order 使用 order_time 作为事件时间:

INSERT INTO dwd_trd_order
SELECT o.order_id,o.user_id,d.product_id,d.price,d.quantity,o.order_time,  -- 保留为行时间属性(需与目标表定义一致)CAST(d.detail_time AS TIMESTAMP(3)) AS detail_time  -- 转为普通时间戳
FROM orders o
JOIN order_details d ON o.order_id = d.order_id;
方案二:调整目标表定义

若业务需要同时保留两个时间字段,需在目标表 DDL 中 仅定义一个行时间属性,其他字段转为普通时间戳:

CREATE TABLE dwd_trd_order (order_id STRING,user_id STRING,product_id STRING,price DECIMAL(10,2),quantity INT,order_time TIMESTAMP(3),  -- 行时间属性detail_time TIMESTAMP(3),  -- 普通时间戳WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND  -- 仅一个事件时间
) WITH (...);

3. 关键步骤说明

  1. 检查目标表 DDL
    确保目标表仅有一个 WATERMARK 定义,且对应字段为行时间属性。

  2. 转换多余的行时间属性
    在查询中使用 CAST 将非主时间字段转为普通 TIMESTAMPTIMESTAMP_LTZ

    CAST(detail_time AS TIMESTAMP(3))  -- 转为非行时间属性
    
  3. 验证查询结果
    使用 DESCRIBE 确认查询结果的字段类型:

    DESCRIBE (SELECT ... FROM ...);
    
目标表 DDL(仅一个行时间属性)
CREATE TABLE dwd_trd_order (order_id STRING,user_id STRING,product_id STRING,price DECIMAL(10,2),quantity INT,order_time TIMESTAMP(3),  -- 行时间属性detail_time TIMESTAMP(3),  -- 普通时间戳WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
) WITH (...);
写入数据的 SQL(转换多余时间字段)
INSERT INTO dwd_trd_order
SELECT o.order_id,o.user_id,d.product_id,d.price,d.quantity,o.order_time,  -- 保留为行时间属性CAST(d.detail_time AS TIMESTAMP(3)) AS detail_time  -- 转为普通时间戳
FROM orders o
JOIN order_details d ON o.order_id = d.order_id;

三、DWS

CREATE TABLE dws_trd_order (window_start TIMESTAMP(3),window_end TIMESTAMP(3),product_num bigint,uv bigint,total_amount DECIMAL(10,2)
) WITH ('connector' = 'kafka','topic' = 'dws_trd_order','properties.bootstrap.servers' = 'chb1:9092','scan.startup.mode' = 'earliest-offset','format' = 'json'
);-- dws 
insert into dws_trd_order
SELECTwindow_start, window_end,COUNT(1) AS product_num,COUNT(DISTINCT user_id) AS uv,SUM(price * quantity) AS total_amount
FROM TABLE(CUMULATE(TABLE dwd_trd_order, DESCRIPTOR(detail_time), INTERVAL '5' SECOND, INTERVAL '1' DAY)
)
GROUP BY window_start, window_end;

有个问题: 为什么窗口结束时间从 2025-04-02 20:48:50.000 开始???


dwd_trd_order 表的时间如下order_time              detail_time2025-04-02 20:06:01.281 2025-04-02 20:07:35.4942025-04-02 20:50:27.975 2025-04-02 20:50:33.2332025-04-02 20:50:27.975 2025-04-02 20:50:34.405累计窗口运算如下selectwindow_start, window_end,count(1) product_num,count(distinct user_id) uv,sum(price*quantity) as total_amountfrom TABLE(CUMULATE(TABLE dwd_trd_order, DESCRIPTOR(detail_time ), INTERVAL '5' SECOND, INTERVAL '1' DAY)
)
group by window_start,window_end;
为什么窗口结束时间从 2025-04-02 20:48:50.000 开始???window_start              window_end                    product_num                   uv                             total_amount2025-04-02 00:00:00.000 2025-04-02 20:48:50.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:48:55.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:00.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:05.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:10.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:15.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:20.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:25.000                    1                    1                                  5000.002025-04-02 00:00:00.000 2025-04-02 20:49:30.000

http://www.mrgr.cn/news/96895.html

相关文章:

  • [高级数据结构]线段树SegmentTree
  • React PDF 预览终极优化:30 页大文件不卡,加载快如闪电!
  • python操作es
  • UniApp集成极光推送详细教程
  • Python实现 MCP 客户端调用(高德地图 MCP 服务)查询天气工具示例
  • Laravel 中使用 JWT 作用户登录,身份认证
  • 【硬件视界9】网络硬件入门:从网卡到路由器
  • IO 端口与 IO 内存
  • Description of STM32F1xx HAL drivers用户手册
  • Mysql的安装
  • ControlNet-Tile详解
  • 3D意识(3D Awareness)浅析
  • Scala相关知识学习总结3
  • Java8 到 Java21 系列之 Lambda 表达式:函数式编程的开端(Java 8)
  • 【Linux】内核驱动学习笔记(二)
  • L2-001 紧急救援
  • Java基础 4.2
  • 大智慧前端面试题及参考答案
  • Shiro学习(三):shiro整合springboot
  • 【微知】ARM CPU是如何获取某个进程的页表的?(通过TTBR寄存器,MMU进行处理)