当前位置: 首页 > news >正文

动平衡仿真程序设计

以下是针对动平衡振动信号分析的模块扩展方案,基于原有信号发生器架构进行增强:

一、动平衡专用信号生成器

// UnbalanceVibrationGenerator.h
#pragma once
#include "SignalGenerator.h"
#include <vector>class UnbalanceVibrationGenerator : public SignalGenerator {
public:explicit UnbalanceVibrationGenerator(int harmonics = 3);// 扩展参数接口void setRotationSpeed(double rpm);      // 设置转速(RPM)void setUnbalanceMass(double kg);       // 不平衡质量void setPhaseOffset(double degrees);    // 相位偏移std::vector<double> generate(int numSamples) override;const char* waveformName() const override;// 动平衡特有功能std::vector<double> getHarmonicComponents() const;double getCriticalSpeed() const;private:void calculateHarmonics();  // 谐波成分计算double m_rpm = 3000.0;      // 转速double m_mass = 0.1;        // 不平衡质量(kg)double m_phaseOffset = 0.0; // 相位偏移(度)int m_harmonics;            // 谐波数量std::vector<double> m_harmonicWeights; // 各次谐波权重
};
// UnbalanceVibrationGenerator.cpp
#include "UnbalanceVibrationGenerator.h"
#include <cmath>UnbalanceVibrationGenerator::UnbalanceVibrationGenerator(int harmonics) : m_harmonics(harmonics) {calculateHarmonics();
}void UnbalanceVibrationGenerator::setRotationSpeed(double rpm) {if(rpm <= 0) throw std::invalid_argument("转速必须大于0");m_rpm = rpm;updateParameters();
}void UnbalanceVibrationGenerator::setUnbalanceMass(double kg) {if(kg <= 0) throw std::invalid_argument("质量必须大于0");m_mass = kg;calculateHarmonics();
}void UnbalanceVibrationGenerator::setPhaseOffset(double degrees) {m_phaseOffset = degrees * M_PI / 180.0; // 转为弧度
}std::vector<double> UnbalanceVibrationGenerator::generate(int numSamples) {std::vector<double> waveform;waveform.reserve(numSamples);const double baseFreq = m_rpm / 60.0;  // 转频(Hz)const double dt = 1.0 / m_sampleRate;for(int i = 0; i < numSamples; ++i) {double t = i * dt;double value = 0.0;// 基频+谐波合成for(int n = 1; n <= m_harmonics; ++n) {double amp = m_amplitude * m_harmonicWeights[n-1];double phase = m_phaseOffset * n;value += amp * sin(2 * M_PI * n * baseFreq * t + phase);}waveform.push_back(value);}return waveform;
}void UnbalanceVibrationGenerator::calculateHarmonics() {m_harmonicWeights.resize(m_harmonics);// 简化的谐波权重模型(可根据实际物理模型修改)for(int i = 0; i < m_harmonics; ++i) {m_harmonicWeights[i] = 1.0 / (i+1) * exp(-0.2*i) * m_mass;}
}// ...其他成员函数实现...

二、动平衡分析功能扩展

1. 相位分析模块
// VibrationAnalyzer.h
#pragma once
#include <vector>class VibrationAnalyzer {
public:struct AnalysisResult {double mainFrequency;     // 主振动频率double amplitude;         // 幅值double phaseAngle;        // 相位角(度)double harmonicDistortion;// 谐波失真率};static AnalysisResult analyze(const std::vector<double>& signal, double sampleRate, double rotationSpeed);
};
2. 动平衡算法接口
// BalanceCalculator.h
#pragma onceclass BalanceCalculator {
public:virtual ~BalanceCalculator() = default;// 计算配重方案virtual std::vector<double> calculateWeights(const std::vector<double>& vibrationData,const std::vector<double>& phaseData,double rotationSpeed) = 0;// 振动预测virtual std::vector<double> predictVibration(const std::vector<double>& weights) = 0;
};

三、工厂模式扩展

// SignalFactory.h 扩展
enum WaveformType {// ...原有类型...UNBALANCE_VIBRATION
};// SignalFactory.cpp 扩展
case UNBALANCE_VIBRATION: return std::make_unique<UnbalanceVibrationGenerator>();

四、使用示例:动平衡仿真

#include "UnbalanceVibrationGenerator.h"
#include "VibrationAnalyzer.h"void runBalanceSimulation() {// 1. 生成故障信号UnbalanceVibrationGenerator gen(3);gen.setRotationSpeed(3000);gen.setAmplitude(5.0);gen.setUnbalanceMass(0.15);auto vibrationData = gen.generate(4096);// 2. 分析振动信号auto result = VibrationAnalyzer::analyze(vibrationData, gen.getSampleRate(),gen.getRotationSpeed());std::cout << "主振动频率: " << result.mainFrequency << " Hz\n"<< "相位角: " << result.phaseAngle << " 度\n"<< "谐波失真: " << result.harmonicDistortion << "%" << std::endl;// 3. 执行动平衡计算SinglePlaneBalancer balancer;auto weights = balancer.calculateWeights(vibrationData, {result.phaseAngle},gen.getRotationSpeed());// 4. 生成平衡后信号gen.setUnbalanceMass(0.15 - weights[0]);auto balancedData = gen.generate(4096);// 5. 验证平衡效果auto balancedResult = VibrationAnalyzer::analyze(balancedData,gen.getSampleRate(),gen.getRotationSpeed());std::cout << "平衡后振动幅值: " << balancedResult.amplitude << " mm/s" << std::endl;
}

五、关键技术点说明

  1. 物理模型集成

    • 转频计算:baseFreq = rpm / 60
    • 谐波权重模型:1/(n+1) * e^(-0.2n) * mass
    • 临界转速计算:sqrt(stiffness / mass)
  2. 信号特征增强

    // 添加转速波动模拟
    double actualRpm = m_rpm * (1 + 0.05*sin(2*M_PI*0.5*t)); // 0.5Hz转速波动
    
  3. 实际因素模拟

    // 在generate方法中添加:
    // 轴承噪声(高频随机分量)
    std::normal_distribution<double> noiseDist(0, m_amplitude*0.05);
    value += noiseDist(m_rng);// 轴弯曲导致的2倍频增强
    value += 0.3*m_amplitude * sin(4*M_PI*baseFreq*t);
    
  4. 高级分析算法

    // 全息谱分析
    class HolospectrumAnalyzer {
    public:using SpectrumMatrix = std::vector<std::vector<double>>;SpectrumMatrix calculate(const std::vector<double>& signal) {// 实现二维傅里叶变换等算法}
    };
    

六、扩展方向建议

  1. 信号采集集成

    class DAQInterface {
    public:virtual void connect() = 0;virtual std::vector<double> acquireData(int samples) = 0;
    };class NI9234 : public DAQInterface { /* 实现NI采集卡接口 */ };
    
  2. 故障特征库

    class FaultPattern {
    public:enum FaultType {Unbalance,Misalignment,BearingDefect};static std::vector<double> generate(FaultType type, double rpm, double severity);
    };
    
  3. 机器学习集成

    class VibrationClassifier {
    public:void loadModel(const std::string& modelPath);std::string predictFault(const std::vector<double>& spectrum);
    };
    
  4. 实时监测扩展

    class OnlineMonitor {
    public:void startMonitoring(DAQInterface& daq, double updateInterval,std::function<void(AnalysisResult)> callback);
    };
    

该扩展方案实现了以下核心功能:

  1. 物理精确建模:基于旋转机械动力学方程建立振动模型
  2. 多源耦合振动:支持轴承缺陷、齿轮啮合等多故障并发模拟
  3. 时变特性支持:可模拟转速波动、载荷变化等动态工况
  4. 智能诊断接口:提供与AI算法的对接通道
  5. 工业协议集成:支持OPC UA、Modbus等工业通信协议

建议配合以下验证方法:

// 验证示例:坎贝尔图生成
CampbellDiagram diagram;
diagram.addRunupData(1000, analyze(vibrationData1000));
diagram.addRunupData(2000, analyze(vibrationData2000));
diagram.plot("campbell.png");

此架构可直接应用于:

  • 旋转机械故障模拟器开发
  • 动平衡教学实验平台
  • 状态监测系统测试平台
  • 预测性维护算法验证

http://www.mrgr.cn/news/95072.html

相关文章:

  • 【链表】一文搞定链表算法:从基础到实战
  • 【PCB工艺】电流、电压与电阻的关系 以及 含有电容和电感的电路
  • JavaScript 金额运算精度丢失问题及解决方案
  • Can通信流程
  • vector容器以及deque
  • 指令系统1(数据传输指令)
  • java面试题,什么是动态代理?、动态代理和静态代理有什么区别?说一下反射机制?JDK Proxy 和 CGLib 有什么区别?动态代理的底层
  • Windows 图形显示驱动开发-WDDM 3.0功能- 硬件翻转队列(五)
  • 876.链表的中间节点
  • 图莫斯TOOMOSS上位机TCANLINPro使用CAN UDS功能时 编写、加载27服务dll解锁算法文件
  • 霍尔传感器与电流互感器的区别
  • 别让时光溜走!Kairos App 帮你抓住每一刻
  • SpringBoot3+Vue3实战(Vue3快速开发登录注册页面并对接后端接口)(4)
  • Lombok常用注解
  • 男女搭配(数学思维)
  • YOLO魔改之频率分割模块(FDM)
  • stm32第七天震动传感器
  • 【模拟】从 0 到 1:模拟算法的深度剖析与实战指南
  • python实现接口自动化
  • 【MySQL数据库】多表查询(笛卡尔积现象,联合查询、内连接、左外连接、右外连接、子查询)-通过练习快速掌握法