当前位置: 首页 > news >正文

Redis存储​⑫​哨兵Sentinel_高可用实现方案

目录

1. 哨兵Sentinel概念

1.1 主从复制的缺点

1.2 人工恢复主节点故障

1.3 哨兵自动恢复主节点故障

2. 重新选举过程

3. 选举原理

3.1 主观下线

3.2 客观下线

3.3 选举出哨兵的 leader

3.4 leader挑选出master

本篇完。


        Redis 的主从复制模式下,一旦主节点由于故障不能提供服务,需要人工进行主从切换,同时大量的客户端需要被通知切换到新的主节点上,对于上了一定规模的应用来说,这种方案是无法接受的,于是 Redis 从 2.8 开始提供了 Redis Sentinel(哨兵)加个来解决这个问题。

1. 哨兵Sentinel概念

        由于对 Redis 的许多概念都有不同的名词解释,所以在介绍 Redis Sentinel 之前,先对几个名词概念进行必要的说明,如下表所示。

Redis Sentinel 相关名词解释:

        Redis Sentinel 是 Redis 的高可用实现方案,在实际的生产环境中,对提高整个系统的高可用是非常有帮助的。

1.1 主从复制的缺点

Redis 的主从复制模式可以将主节点的数据改变同步给从节点,这样从节点就可以起到两个作用:

        第一,作为主节点的一个备份,一旦主节点出了故障不可达的情况,从节点可以作为后备 “顶” 上来,并且保证数据尽量不丢失(主从复制表现为最终一致性)。第二,从节点可以分担主节点上的读压力,让主节点只承担写请求的处理,将所有的读请求负载均衡到各个从节点上。

但是主从复制模式并不是万能的,它同样遗留下以下几个问题:

  • 主节点发生故障时,进行主备切换的过程是复杂的,需要完全的人工参与,导致故障恢复时间无法保障。
  • 主节点可以将读压力分散出去,但写压力 / 存储压力是无法被分担的,还是受到单机的限制。其中第一个问题是高可用问题,即 Redis 哨兵主要解决的问题。第二个问题是属于存储分布式的问题,留给 Redis 集群去解决。

1.2 人工恢复主节点故障

        Redis 主从复制模式下,主节点故障后需要进行的人工工作是比较繁琐的,在图中大致展示了整体过程。

1. Redis 主节点故障后需要进行的操作

        实际开发过程中,对于服务器后端开发,监控程序是非常重要的。服务器要求要有比较高的可用性,而服务器长期运行总会出现一些 “意外”,但也没法全靠人工来盯着这些服务器运行。所以,此时就可以写一个程序,用程序来盯着服务器的运行状态(监控程序,往往还需要搭配 “报警程序” 来发现服务器的运行出现状态异常)。

步骤解释:

  1. 运维人员通过监控系统,发现 Redis 主节点故障宕机。
  2. 运维人员从所有节点中,选择一个(此处选择了 slave 1)执行 slaveof no one,使其作为新的主节点。
  3. 运维人员让剩余从节点(此处为 slave 2)执行 slaveof {newMasterIp} {newMasterPort},连上新的主节点,从新的主节点开始数据同步。
  4. 告知客户端(修改客户的的配置),让客户端能够连接新的主节点,用来完成修改数据的操作,需要更新应用方连接的主节点信息到 {newMasterIp} {newMasterPort}。
  5. 如果原来挂了的主节点恢复,执行 slaveof {newMasterIp} {newMasterPort},让其成为⼀个从节点,挂到这组机器中。上述过程可以看到基本需要人工介入,无法被认为架构是高可用的,而这就是 Redis Sentinel 所要做的。

1.3 哨兵自动恢复主节点故障

        当主节点出现故障时,Redis Sentinel 能自动完成故障发现和故障转移,并通知应用方,从而实现真正的高可用。

        Redis Sentinel 是一个分布式架构,其中包含若干个 Sentinel 节点和 Redis 数据节点,每个 Sentinel 节点会对数据节点和其余 Sentinel 节点进行监控,当它发现节点不可达时,会对节点做下线表示。如果下线的是主节点,它还会和其他的 Sentinel 节点进行 “协商”,当大多数 Sentinel 节点对主节点不可达这个结论达成共识之后,它们会在内部 “选举” 出一个领导节点来完成自动故障转移的工作,同时将这个变化实时通知给 Redis 应用方。整个过程是完全自动的,不需要人工介入。整体的架构如下图所示。

        这里的分布式架构是指:Redis 数据节点、Sentinel 节点集合、客户端分布在多个物理节点上,不要与后面将要学习的 Redis Cluster 集群分布式混淆。

        Redis Sentinel 相比于主从复制模式是多了若干单独的(建议保持奇数,最少应该是 3 个)Sentinel 节点用于实现监控数据节点,哨兵节点会定期监控(这些进程之间会建立 tcp 长连接,通过这样的长连接定期发送心跳包)所有节点(包含数据节点和其他哨兵节点)。

针对主节点故障的情况,故障转移流程大致如下:

  1. 主节点故障,从节点同步连接中断,主从复制停止。
  2. 哨兵节点通过定期监控发现主节点出现故障。哨兵节点与其他哨兵节点进⾏协商,达成多数认同主节点故障的共识。这步主要是防止该情况:出故障的不是主节点,而是发现故障的哨兵节点,该情况经常发生于哨兵节点的网络被孤立的场景下。
  3. 哨兵节点之间使用 Raft 算法选举出⼀个 leader(领导角色),由该节点负责后续的故障转移工作。
  4. 哨兵领导者开始执行故障转移:leader 从节点中选择⼀个作为新的主节点,挑选出新的主节点之后,哨兵节点就会自动控制这个被选中的节点,执行 slaveof no one,并且控制其他从节点,修改 slaveof 到新的主节点上,哨兵节点会自动通知客户端程序,告知新的主节点是谁,并且后续客户端再进行写操作,就会针对新的节点进行操作。

通过上面的介绍,可以看出 Redis Sentinel 具有以下几个功能:

  • 监控:Sentinel 节点会定期检测 Redis 数据节点、其余哨兵节点是否可达。
  • 故障转移:实现从节点晋升(promotion)为主节点并维护后续正确的主从关系。
  • 通知:Sentinel 节点会将故障转移的结果通知给应用方。

        注意:只有一个 Redis 哨兵节点也是可以的。但是万一这个哨兵节点挂了,后续 Redis 节点也挂了的话,就无法进行自动回复的过程了。而且出现误判的概率也比较高,毕竟网络传输数据容易出现抖动、延迟或者丢包等情况,只有一个哨兵节点出现上述情况影响较大。

基本原则:在分布式系统中,应该避免使用 “单点”。


2. 重新选举master过程

        哨兵存在的意义:能够在 Redis 主从结构出现问题(比如主节点挂了)时,哨兵节点自动帮我们重新选出一个主节点来代替之前挂了的节点,保证整个 Redis 仍然是可用状态。

        当主节点挂了之后,哨兵节点就开始工作了,哨兵发现了主节点 sdown,进一步的由于主节点宕机得票达到 3/2,达到法定得票,于是 master 被判定为 odown。

  • 主观下线(Subjectively Down,SDown):哨兵感知到主节点没心跳了,判定为主观下线。
  • 客观下线(Objectively Down,ODown):多个哨兵达成一致意见,才能认为 master 确实下线了。

        接下来,哨兵们挑选出了一个新的 master。此时,对于 Redis 来说仍然是可以正常使用的。

  • Redis 主节点如果宕机,哨兵会把其中的一个从节点,提拔成主节点。
  • 当之前的 Redis 主节点重启之后,这个主节点被加入到哨兵的监控中,但是只会被作为从节点使用。

3. 选举master原理

        假定当前环境为:三个哨兵(sentenal1、sentenal2、sentenal3),一个主节点(redis-master),两个从节点(redis-slave1、redis-slave2)。

当主节点出现故障,就会触发重新一系列过程。

3.1 主观下线

        哨兵节点通过心跳包来判断 Redis 服务器是否正常工作。当 redis-master 宕机,此时 redis-master 和三个哨兵之间的心跳包就没有了。此时,站在三个哨兵的角度来看,redis-master 出现严重故障。此时还不能排除网络波动的影响,因此三个哨兵均会把 redis-master 判定为主观这个 Redis 节点下线(SDown)。


3.2 客观下线

        此时,哨兵 sentenal1、sentenal2、sentenal3 均会对主节点故障这件事情进行投票。当故障得票数 >= 配置的法定票数之后,此时意味着 redis-master 故障这个事情被做实了,此时触发客观下线(ODown)。

        是否可能出现非常严重的网络波动,而导致所有的哨兵都联系不上 Redis 主节点,而被误判为挂了呢?

        是有这个可能的。如果出现这个情况,怕是用户的客户端也连不上 Redis 主节点了,此时这个主节点基本也就无法正常工作了。

“挂了” 不一定是进程崩了,只要是无法访问,都可以被视为是挂了。


3.3 选举出哨兵的 leader

        接下来需要哨兵把剩余的 slave 中挑选出一个新的 master,这个工作不需要所有的哨兵都参与,只需要选出个代表(称为 leader),由 leader 负责进行 slave 升级到 master 的提拔过程。这个选举的过程涉及到 Raft 算法。

        Raft算法是一种为分布式系统设计的共识算法,旨在简化共识过程的理解与实现。其核心目标是在多个节点间高效达成一致,确保系统在节点故障时仍能可靠运行。

假定一共三个哨兵节点:S1、S2、S3

  1. 每个哨兵节点都给其他所有哨兵节点,发起⼀个 “拉票请求”(S1 -> S2, S1 -> S3, S2 -> S1, S2 -> S3,S3 -> S1,S3 -> S2)。
  2. 收到拉票请求的节点,会回复一个 “投票响应”。响应的结果有两种可能,投 / 不投。比如 S1 给 S2 发了个投票请求, S2 就会给 S1 返回投票响应。到底 S2 是否要投 S1 呢?取决于 S2 是否给别⼈投过票了(每个哨兵只有一票)。如果 S2 没有给别⼈投过票,换而言之,S1 是第一个向 S2 拉票的,那么 S2 就会投 S1,否则则不投。
  3. 一轮投票完成之后, 发现得票超过半数的节点,自动成为 leader。如果出现平票的情况(S1 投 S2,S2 投 S3,S3 投 S1,每人一票),就重新再投一次即可。这也是为啥建议哨兵节点设置成奇数个的原因。如果是偶数个,则增大了平票的概率,带来不必要的开销。
  4. leader 节点负责挑选一个 slave 成为新的 master,当其他的 sentenal 发现新的 master 出现了,就说明选举结束了。

        简而言之,Raft 算法的核心就是 “先下手为强”。谁率先发出了拉票请求,谁就有更大的概率成为 leader。这里的决定因素成了 “网络延时”。网络延时本身就带有一定随机性。

具体选出的哪个节点是 leader,这个并不重要,重要的是能选出一个节点即可 。


3.4 leader挑选出master

leader 挑选出合适的 slave 成为新的 master,挑选规则:

挑选规则:

  1. 比较优先级。优先级高(数值小的)的上位,优先级是配置文件中的配置项(slave-priority 或者 replica-priority)。
  2. 比较 replication offset 谁复制的数据多,高的上位。
  3. 比较 run id,谁的 id 小,谁上位。

当某个 slave 节点被指定为 master 之后,

  1. leader 指定该节点执行 slave no one,成为 master。
  2. leader 指定剩余的 slave 节点,都依附于这个新 master。

选举小结:

        上述过程都是 “无人值守”,Redis 自动完成的。这样做就解决了主节点宕机之后需要人工干预的问题,提高了系统的稳定性和可用性。

注意事项:

  • 哨兵节点不能只有一个,否则哨兵节点挂了也会影响系统可用性。
  • 哨兵节点最好是奇数个,方便选举 leader,得票更容易超过半数。
  • 哨兵节点不负责存储数据,仍然是 redis 主从节点负责存储。
  • 哨兵 + 主从复制解决的问题是 “提高可用性”,不能解决 “数据极端情况下写丢失” 的问题。
  • 哨兵 + 主从复制不能提高数据的存储容量。当我们需要存的数据接近或者超过机器的物理内存,这样的结构就难以胜任了。

为了能存储更多的数据,就引入了集群,后面将会详细介绍。


本篇完。

下一篇是Redis存储⑬Redis集群_扩展存储空间。


http://www.mrgr.cn/news/92320.html

相关文章:

  • 智慧交通之信号控制【绿波带】
  • 大厂都在用的前端换肤方案:多品牌适配 + 夜间模式全解析
  • java.lang.IllegalStateException: dbType not support : null, url null
  • 本地开发用ASP.NET Core Web API项目创建及测试
  • low rank decomposition如何用于矩阵的分解
  • Flutter - 基础Widget
  • 2024最新版鸿蒙纯血原生应用开发教程文档丨学习ArkTS语言-基本语法
  • AI绘画软件Stable Diffusion详解教程(2):Windows系统本地化部署操作方法(专业版)
  • OkHttp、Retrofit、RxJava:一文讲清楚
  • 单目摄像头物体深度计算基础原理
  • SQL进阶实战技巧:汽车转向次数分析 | 真实场景案例
  • Android Realm数据库使用与集成指南
  • 外发抄板SCH与PCB检查系列
  • 禾迈电力电子嵌入式面经和参考答案
  • 【论文学习】DeepSeek-R1 总结
  • Deepseek 实战全攻略,领航科技应用的深度探索之旅
  • C++ 八股(整理记录)
  • JavaScript 简单类型与复杂类型
  • TestNG-Java自动化测试快速入门
  • Linux时间日期类指令