NViST运行笔记
文章标题:
NViST: In the Wild New View Synthesis from a Single Image with Transformers
1. 环境配置
创建环境
conda create -n nvist python=3.9
进入环境
conda activate nvist
安装torch torchvision torchaudio
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu121
安装其它依赖
pip install tqdm scikit-image opencv-python configargparse lpips imageio-ffmpeg lpips tensorboard torch_efficient_distloss
pip install easydict timm plyfile matplotlib kornia accelerate
pip install tensorflow pandas
pip install git+https://github.com/google/nerfies.git@v2
pip install "git+https://github.com/google/nerfies.git#egg=pycolmap&subdirectory=third_party/pycolmap"
2. 数据下载与预处理
2.1. 获取下载地址和密码
点击链接 https://docs.google.com/forms/d/e/1FAIpQLSfU9BkV1hY3r75n5rc37IvlzaK2VFYbdsvohqPGAjb2YWIbUg/viewform
填写所有的必填项
得到下载地址和密码
点击链接并输入密码
2.2. 使用chrome下载
进入开发者模式(Windows和Linux快捷键Ctrl+Shift+I,MacOS快捷键command+option+J)
进入Network tab
选择若干文件,点击下载
如果是下载到桌面客户端,则等待下载完成即可;如果想下载到远端,则需要继续下面的步骤。
看到一个类似"download.aspx?..."的条目,右键点击→Copy→Copy as cURL
Paste the copied content directly in the terminal and append --output mvi_xxx.zip, since the terminal isn't capable of showing binary data.
2.3. 数据预处理
python preprocess/downsample_imgs --data_dir [data directory]
3. 训练
4. 推理
参考文献
GitHub - wbjang/nvist_official: (CVPR 2024) NViST: In the wild New View Synthesis from a Single Image with Transformers