当前位置: 首页 > news >正文

Flink中普通API的使用

本篇文章从Source、Transformation(转换因子)、sink这三个地方进行讲解

Source:

  1. 创建DataStream
  2. 本地文件
  3. Socket
  4. Kafka

Transformation(转换因子):

  1. map
  2. FlatMap
  3. Filter
  4. KeyBy
  5. Reduce
  6. Union和connect
  7. Side Outputs

sink:

  1. print 打印
  2. writerAsText 以文本格式输出
  3. writeAsCsv 以csv格式输出
  4. 输出到MySQL
  5. 输出到kafka
  6. 自定义输出

先准备一个模板方便后续使用


#if (${PACKAGE_NAME} && ${PACKAGE_NAME} != "")package ${PACKAGE_NAME};#end
#parse("File Header.java")
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**@基本功能:@program:${PROJECT_NAME}@author: ${USER}@create:${YEAR}-${MONTH}-${DAY} ${HOUR}:${MINUTE}:${SECOND}**/
public class ${NAME} {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据//3. transformation-数据处理转换//4. sink-数据输出//5. execute-执行env.execute();
}
}

Source:

预定义source

创建DataStream(四种)

  • 使用env.fromElements:类型要一致
  • 使用env.fromcollections:支持多种collection的具体类型
  • 使用env.generateSequence()方法创建基于Sequence的DataStream --已经废弃了
  • 使用env.fromSequence()方法创建基于开始和结束的DataStream
package com.bigdata.source;import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;public class _01YuDingYiSource {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 各种获取数据的SourceDataStreamSource<String> dataStreamSource = env.fromElements("hello world txt", "hello nihao kongniqiwa");dataStreamSource.print();// 演示一个错误的//DataStreamSource<Object> dataStreamSource2 = env.fromElements("hello", 1,3.0f);//dataStreamSource2.print();DataStreamSource<Tuple2<String, Integer>> elements = env.fromElements(Tuple2.of("张三", 18),Tuple2.of("lisi", 18),Tuple2.of("wangwu", 18));elements.print();// 有一个方法,可以直接将数组变为集合  复习一下数组和集合以及一些非常常见的APIString[] arr = {"hello","world"};System.out.println(arr.length);System.out.println(Arrays.toString(arr));List<String> list = Arrays.asList(arr);System.out.println(list);env.fromElements(Arrays.asList(arr),Arrays.asList(arr),Arrays.asList(arr)).print();// 第二种加载数据的方式// Collection 的子接口只有 Set 和 ListArrayList<String> list1 = new ArrayList<>();list1.add("python");list1.add("scala");list1.add("java");DataStreamSource<String> ds1 = env.fromCollection(list1);DataStreamSource<String> ds2 = env.fromCollection(Arrays.asList(arr));// 第三种DataStreamSource<Long> ds3 = env.fromSequence(1, 100);ds3.print();// execute 下面的代码不运行,所以,这句话要放在最后。env.execute("获取预定义的Source");}
}

 本地文件

        File file = new File("datas/wc.txt");File file2 = new File("./");System.out.println(file.getAbsoluteFile());System.out.println(file2.getAbsoluteFile());DataStreamSource<String> ds1 = env.readTextFile("datas/wc.txt");ds1.print();// 还可以获取hdfs路径上的数据DataStreamSource<String> ds2 = env.readTextFile("hdfs://bigdata01:9820/home/a.txt");ds2.print();

Socket 

linux(socket命令)
下载:yum install -y nc   
nc -lk 8888   --向8888端口发送消息,这个命令先运行,如果先运行java程序,会报错!
如果端口被占用就换一个端口
本地(socket命令)
nc -lp 8888
或者 nc -l -p 8888
如果不是在exe端打开的用 -l -p 8888
java代码 
DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);
Word Count案例 
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class SourceDemo02_Socket {public static void main(String[] args) throws Exception {//TODO 1.env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//TODO 2.source-加载数据DataStream<String> socketDS = env.socketTextStream("bigdata01", 8889);//TODO 3.transformation-数据转换处理//3.1对每一行数据进行分割并压扁DataStream<String> wordsDS = socketDS.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {String[] words = value.split(" ");for (String word : words) {out.collect(word);}}});//3.2每个单词记为<单词,1>DataStream<Tuple2<String, Integer>> wordAndOneDS = wordsDS.map(new MapFunction<String, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {return Tuple2.of(value, 1);}});//3.3分组KeyedStream<Tuple2<String, Integer>, String> keyedDS = wordAndOneDS.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> value) throws Exception {return value.f0;}});//3.4聚合SingleOutputStreamOperator<Tuple2<String, Integer>> result = keyedDS.sum(1);//TODO 4.sink-数据输出result.print();//TODO 5.execute-执行env.execute();}
}

 JDBC

 Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/flink", "root", "root");PreparedStatement preparedStatement = connection.prepareStatement("select monitor_id,speed_limit from t_monitor_info group by monitor_id, speed_limit");ResultSet resultSet = preparedStatement.executeQuery();ArrayList<Tuple2<String,Double>> arr = new ArrayList<>();while (resultSet.next()){String monitor_id = resultSet.getString("monitor_id");Double speed_limit = resultSet.getDouble("speed_limit");Tuple2 tuple2 = new Tuple2(monitor_id, speed_limit);arr.add(tuple2);}

Kafka

添加依赖

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>${flink.version}</version>
</dependency>
package com.bigdata.day02;import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;import java.util.Properties;public class KafkaSource {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();Properties properties = new Properties();properties.setProperty("bootstrap.servers", "bigdata01:9092");properties.setProperty("group.id", "g1");FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<String>("topic1",new SimpleStringSchema(),properties);DataStreamSource<String> dataStreamSource = env.addSource(kafkaSource);// 以下代码跟flink消费kakfa数据没关系,仅仅是将需求搞的复杂一点而已// 返回true 的数据就保留下来,返回false 直接丢弃dataStreamSource.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String word) throws Exception {// 查看单词中是否包含success 字样return word.contains("success");}}).print();env.execute();}
}

自定义source

SourceFunction:非并行数据源(并行度只能=1) --接口

RichSourceFunction:多功能非并行数据源(并行度只能=1) --类

ParallelSourceFunction:并行数据源(并行度能够>=1) --接口

RichParallelSourceFunction:多功能并行数据源(并行度能够>=1) --类 【建议使用的】

package com.bigdata.day02;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;import java.util.Random;
import java.util.UUID;/*** 需求: 每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)* 要求:* - 随机生成订单ID(UUID)* - 随机生成用户ID(0-2)* - 随机生成订单金额(0-100)* - 时间戳为当前系统时间*/@Data  // set get toString
@AllArgsConstructor
@NoArgsConstructor
class OrderInfo{private String orderId;private int uid;private int money;private long timeStamp;
}
// class MySource extends RichSourceFunction<OrderInfo> {
//class MySource extends RichParallelSourceFunction<OrderInfo> {
class MySource implements SourceFunction<OrderInfo> {boolean flag = true;@Overridepublic void run(SourceContext ctx) throws Exception {// 源源不断的产生数据Random random = new Random();while(flag){OrderInfo orderInfo = new OrderInfo();orderInfo.setOrderId(UUID.randomUUID().toString());orderInfo.setUid(random.nextInt(3));orderInfo.setMoney(random.nextInt(101));orderInfo.setTimeStamp(System.currentTimeMillis());ctx.collect(orderInfo);Thread.sleep(1000);// 间隔1s}}// source 停止之前需要干点啥@Overridepublic void cancel() {flag = false;}
}
public class CustomSource {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);// 将自定义的数据源放入到env中DataStreamSource dataStreamSource = env.addSource(new MySource())/*.setParallelism(1)*/;System.out.println(dataStreamSource.getParallelism());dataStreamSource.print();env.execute();}}

 如果代码换成ParallelSourceFunction,每次生成12个数据,假如是12核数的话(有多少核就生成多少个数据)。

 Rich 类型的Source可以比非Rich的多出有:
    - open方法,实例化的时候会执行一次,多个并行度会执行多次的哦(因为是多个实例了)
    - close方法,销毁实例的时候会执行一次,多个并行度会执行多次的哦
    - getRuntimeContext 方法可以获得当前的Runtime对象(底层API) 

rich模板
/*** 自定义一个RichParallelSourceFunction的实现*/
public class CustomerRichSourceWithParallelDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> mySource = env.addSource(new MySource()).setParallelism(6);mySource.print();env.execute();}/*Rich 类型的Source可以比非Rich的多出有:- open方法,实例化的时候会执行一次,多个并行度会执行多次的哦(因为是多个实例了)- close方法,销毁实例的时候会执行一次,多个并行度会执行多次的哦- getRuntime方法可以获得当前的Runtime对象(底层API)*/public static class MySource extends RichParallelSourceFunction<String> {@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);System.out.println("open......");}@Overridepublic void close() throws Exception {super.close();System.out.println("close......");}@Overridepublic void run(SourceContext<String> ctx) throws Exception {ctx.collect(UUID.randomUUID().toString());}@Overridepublic void cancel() {}}
}

Transformation(转换因子):

map算子(一变多)

package com.bigdata.day02;import lombok.AllArgsConstructor;
import lombok.Data;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import java.text.SimpleDateFormat;
import java.util.Date;/*** @基本功能:* @program:FlinkDemo* @author: 闫哥* @create:2024-05-13 11:40:37**/
@Data
@AllArgsConstructor
class LogBean{private String ip;      // 访问ipprivate int userId;     // 用户idprivate long timestamp; // 访问时间戳private String method;  // 访问方法private String path;    // 访问路径
}
public class Demo04 {// 将数据转换为javaBeanpublic static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据DataStreamSource<String> streamSource = env.readTextFile("datas/a.log");//3. transformation-数据处理转换SingleOutputStreamOperator<LogBean> map = streamSource.map(new MapFunction<String, LogBean>() {@Overridepublic LogBean map(String line) throws Exception {String[] arr = line.split("\\s+");//时间戳转换  17/05/2015:10:06:53String time = arr[2];SimpleDateFormat format = new SimpleDateFormat("dd/MM/yyyy:HH:mm:ss");Date date = format.parse(time);long timeStamp = date.getTime();return new LogBean(arr[0],Integer.parseInt(arr[1]),timeStamp,arr[3],arr[4]);}});//4. sink-数据输出map.print();//5. execute-执行env.execute();}
}

FlatMap算子(类似于炸裂函数)

数据

张三,苹果手机,联想电脑,华为平板
李四,华为手机,苹果电脑,小米平板

package com.bigdata.day03;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @基本功能:* @program:FlinkDemo* @author: 闫哥* @create:2023-11-21 09:51:59**/
public class FlatMapDemo {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据//2. source-加载数据DataStream<String> fileStream = env.readTextFile("F:\\BD230801\\FlinkDemo\\datas\\flatmap.log");//3. transformation-数据处理转换DataStream<String> flatMapStream = fileStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String line, Collector<String> collector) throws Exception {//张三,苹果手机,联想电脑,华为平板String[] arr = line.split(",");String name = arr[0];for (int i = 1; i < arr.length; i++) {String goods = arr[i];collector.collect(name+"有"+goods);}}});//4. sink-数据输出flatMapStream.print();//5. execute-执行env.execute();}
}

 Filter(过滤)

package com.bigdata.day03;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.commons.lang3.time.DateUtils;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import java.util.Date;/*** @基本功能:* @program:FlinkDemo* @author: zxx* @create:2023-11-21 09:10:30**/public class FilterDemo {@Data@AllArgsConstructor@NoArgsConstructorstatic class LogBean{String ip;      // 访问ipint userId;     // 用户idlong timestamp; // 访问时间戳String method;  // 访问方法String path;    // 访问路径}public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据DataStream<String> fileStream = env.readTextFile("F:\\BD230801\\FlinkDemo\\datas\\a.log");//3. transformation-数据处理转换// 读取第一题中 a.log文件中的访问日志数据,过滤出来以下访问IP是83.149.9.216的访问日志DataStream<String> filterStream = fileStream.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String line) throws Exception {String ip = line.split(" ")[0];return  ip.equals("83.149.9.216");}});//4. sink-数据输出filterStream.print();//5. execute-执行env.execute();}
}

 KeyBy(分组)

元组

//用字段位置
wordAndOne.keyBy(0, 1);//用KeySelector
wordAndOne.keyBy(new KeySelector<Tuple2<String, Integer>, Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> getKey(Tuple2<String, Integer> value) throws Exception {return Tuple2.of(value.f0, value.f1);}
});

POJO (Plain Old Java Object):普通Java对象

public class PeopleCount {private String province;private String city;private Integer counts;public PeopleCount() {}//省略其他代码。。。
}

多个字段keyBy

source.keyBy(new KeySelector<PeopleCount, Tuple2<String, String>>() {@Overridepublic Tuple2<String, String> getKey(PeopleCount value) throws Exception {return Tuple2.of(value.getProvince(), value.getCity());}
});

 Reduce --sum的底层是reduce(聚合)

 //  [ ("10.0.0.1",1),("10.0.0.1",1),("10.0.0.1",1) ]keyByStream.reduce(new ReduceFunction<Tuple2<String, Integer>>() {@Overridepublic Tuple2<String, Integer> reduce(Tuple2<String, Integer> t1, Tuple2<String, Integer> t2) throws Exception {// t1 => ("10.0.0.1",10)// t2 => ("10.0.0.1",1)return Tuple2.of(t1.f0,  t1.f1 + t2.f1);}}).print();

union和connect-合并和连接 

Union

union可以合并多个同类型的流

将多个DataStream 合并成一个DataStream

connect

connect可以连接2个不同类型的流(最后需要处理后再输出)

DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化【一国两制】,两个流相互独立, 作为对比Union后是真的变成一个流了。

和union类似,但是connect只能连接两个流,两个流之间的数据类型可以同,对两个流的数据可以分别应用不同的处理逻辑.

package com.bigdata.day03;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;/*** @基本功能:* @program:FlinkDemo* @author: zxx* @create:2023-11-21 11:40:12**/
public class UnionConnectDemo {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据DataStreamSource<String> stream1 = env.fromElements("hello", "nihao", "吃甘蔗的人");DataStreamSource<String> stream2 = env.fromElements("hello", "kong ni qi wa", "看电子书的人");DataStream<String> unionStream = stream1.union(stream2);unionStream.print();DataStream<Long> stream3 = env.fromSequence(1, 10);// stream1.union(stream3); 报错//3. transformation-数据处理转换ConnectedStreams<String, Long> connectStream = stream1.connect(stream3);// 此时你想使用这个流,需要各自重新处理// 处理完之后的数据类型必须相同DataStream<String> mapStream = connectStream.map(new CoMapFunction<String, Long, String>() {// string 类型的数据@Overridepublic String map1(String value) throws Exception {return value;}// 这个处理long 类型的数据@Overridepublic String map2(Long value) throws Exception {return Long.toString(value);}});//4. sink-数据输出mapStream.print();//5. execute-执行env.execute();}
}
package com.bigdata.transforma;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;/*** @基本功能:* @program:FlinkDemo* @author: zxx* @create:2024-11-22 10:50:13**/
public class _08_两个流join {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);DataStreamSource<String> ds1 = env.fromElements("bigdata", "spark", "flink");DataStreamSource<String> ds2 = env.fromElements("python", "scala", "java");DataStream<String> ds3 = ds1.union(ds2);ds3.print();// 接着演示 connectDataStreamSource<Long> ds4 = env.fromSequence(1, 10);ConnectedStreams<String, Long> ds5 = ds1.connect(ds4);ds5.process(new CoProcessFunction<String, Long, String>() {@Overridepublic void processElement1(String value, CoProcessFunction<String, Long, String>.Context ctx, Collector<String> out) throws Exception {System.out.println("String流:"+value);out.collect(value);}@Overridepublic void processElement2(Long value, CoProcessFunction<String, Long, String>.Context ctx, Collector<String> out) throws Exception {System.out.println("Long流:"+value);out.collect(String.valueOf(value));}}).print("合并后的打印:");//2. source-加载数据//3. transformation-数据处理转换//4. sink-数据输出//5. execute-执行env.execute();}
}

Side Outputs侧道输出(侧输出流) --可以分流

举例说明:对流中的数据按照奇数和偶数进行分流,并获取分流后的数据

package com.bigdata.day02;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;/*** @基本功能:* @program:FlinkDemo* @author: zxx* @create:2024-05-13 16:19:56**/
public class Demo11 {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);// 侧道输出流DataStreamSource<Long> streamSource = env.fromSequence(0, 100);// 定义两个标签OutputTag<Long> tag_even = new OutputTag<Long>("偶数", TypeInformation.of(Long.class));OutputTag<Long> tag_odd = new OutputTag<Long>("奇数", TypeInformation.of(Long.class));//2. source-加载数据SingleOutputStreamOperator<Long> process = streamSource.process(new ProcessFunction<Long, Long>() {@Overridepublic void processElement(Long value, ProcessFunction<Long, Long>.Context ctx, Collector<Long> out) throws Exception {// value 代表每一个数据if (value % 2 == 0) {ctx.output(tag_even, value);} else {ctx.output(tag_odd, value);}}});// 从数据集中获取奇数的所有数据DataStream<Long> sideOutput = process.getSideOutput(tag_odd);sideOutput.print("奇数:");// 获取所有偶数数据DataStream<Long> sideOutput2 = process.getSideOutput(tag_even);sideOutput2.print("偶数:");//3. transformation-数据处理转换//4. sink-数据输出//5. execute-执行env.execute();}
}

sink:

print 打印

writerAsText 以文本格式输出

dataStreamSource.writeAsText("F:\\BD230801\\FlinkDemo\\datas\\result", FileSystem.WriteMode.OVERWRITE);

writerAsText 以文本格式输出

 DataStreamSource<Tuple2<String, Integer>> streamSource = env.fromElements(Tuple2.of("篮球", 1),Tuple2.of("篮球", 2),Tuple2.of("篮球", 3),Tuple2.of("足球", 3),Tuple2.of("足球", 2),Tuple2.of("足球", 3));// writeAsCsv 只能保存 tuple类型的DataStream流,因为如果不是多列的话,没必要使用什么分隔符streamSource.writeAsCsv("datas/csv", FileSystem.WriteMode.OVERWRITE).setParallelism(1);

输出到MySQL

 JdbcConnectionOptions jdbcConnectionOptions = new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withDriverName("com.mysql.cj.jdbc.Driver").withUrl("jdbc:mysql://localhost:3306/zuoye").withUsername("root").withPassword("123456").build();studentDataStreamSource.addSink(JdbcSink.sink("insert into stu values(?,?,?)",new JdbcStatementBuilder<Student>() {@Overridepublic void accept(PreparedStatement preparedStatement, Student student) throws SQLException {preparedStatement.setInt(1,student.getId());preparedStatement.setString(2,student.getName());preparedStatement.setInt(3,student.getAge());}},jdbcConnectionOptions));

 输出到kafka

FlinkKafkaProducer kafkaProducer = new FlinkKafkaProducer<String>("topic2",new SimpleStringSchema(),properties);filterStream.addSink(kafkaProducer);

自定义Sink--模拟jdbcSink的实现 

package com.bigdata.day03;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;/*** @基本功能:* @program:FlinkDemo* @author: zxx* @create:2023-11-21 16:08:04**/public class CustomJdbcSinkDemo {@Data@AllArgsConstructor@NoArgsConstructorstatic class Student{private int id;private String name;private int age;}static class MyJdbcSink  extends RichSinkFunction<Student> {Connection conn =null;PreparedStatement ps = null;@Overridepublic void open(Configuration parameters) throws Exception {// 这个里面编写连接数据库的代码Class.forName("com.mysql.jdbc.Driver");conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test1", "root", "123456");ps = conn.prepareStatement("INSERT INTO `student` (`id`, `name`, `age`) VALUES (null, ?, ?)");}@Overridepublic void close() throws Exception {// 关闭数据库的代码ps.close();conn.close();}@Overridepublic void invoke(Student student, Context context) throws Exception {// 将数据插入到数据库中ps.setString(1,student.getName());ps.setInt(2,student.getAge());ps.execute();}}public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<Student> studentStream = env.fromElements(new Student(1, "马斯克", 51));studentStream.addSink(new MyJdbcSink());env.execute();}
}

http://www.mrgr.cn/news/78088.html

相关文章:

  • OEM sql monitoring 类似SQL
  • #Java-常用API-BigInteger、BigDecima、正则表达式
  • [面试]-golang基础面试题总结
  • 【Linux 篇】Docker 的容器之海与镜像之岛:于 Linux 系统内探索容器化的奇妙航行
  • 排序算法(三)--插入排序
  • 利用Prompt工程为LLM提升推理能力
  • 一篇文章了解Linux
  • 临床检验项目指标学习笔记
  • 【JUC-Interrupt】中断相关概念
  • 低代码开发平台搭建思考与实战
  • 嵌入式入门Day17
  • 【数据结构】链表的基本操作
  • Tkinter置顶弹窗提示操作成功
  • 分布式搜索引擎Elasticsearch(一)
  • Maven学习笔记
  • 设计模式——抽象工厂模式
  • 报表工具功能对比:免费易上手的山海鲸报表 vs 庞大用户群体的Tableau
  • [论文阅读-综述]Supervised Speech Separation Based on Deep Learning: An Overview
  • Android 应用测试的各种环境问题记录(Instrumentation测试)
  • [UE5学习] 一、使用源代码安装UE5.4
  • Dockerfile构建报错【ERROR: failed to solve: process】的解决办法
  • ES更新问题 Failed to close the XContentBuilder异常
  • 动态链接库工作原理 PLT GOT
  • 【数据挖掘】一、基于LDA的用户兴趣建模(兴趣标签生成模型)--用户兴趣挖掘模型
  • 《硬件架构的艺术》笔记(七):处理字节顺序
  • 车载显示display基础知识和评估