当前位置: 首页 > news >正文

关于我重生到21世纪学C语言这件事——指针详解(1)

在这里插入图片描述

人无完人,持之以恒,方能见真我!!!
共同进步!!

文章目录

  • 1. 内存和地址
  • 2. 指针变量和地址
  • 3. 指针变量类型的意义
  • 4. const修饰指针
  • 5. 指针运算
  • 6. 野指针
  • 7. assert断⾔
  • 8. 指针的使⽤和传址调⽤

1. 内存和地址

1.1 内存
在讲内存和地址之前,我们想一个⽣活中的案例:
假设有⼀栋宿舍楼,把你放在楼⾥,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,如果想找到你,就得挨个房⼦去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

⼀楼: 101102103... 
⼆楼: 201202203...

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。

⽣活中,每个房间有了房间号,就能提⾼效率,能快速的找到房间。

如果把上⾯的例⼦对照到计算机中,⼜是怎么样呢?
我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的
数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如
何⾼效的管理呢?

其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。
计算机中常⻅的单位(补充):
⼀个⽐特位可以存储⼀个2进制的位1或者0

 bit - ⽐特位Byte - 字节KBMBGBTBPB
 1Byte = 8bit1KB = 1024Byte1MB = 1024KB1GB = 1024MB1TB = 1024GB1PB = 1024TB

其中,每个内存单元,相当于⼀个学⽣宿舍,⼀个字节空间⾥⾯能放8个⽐特位,就好⽐同学们住的⼋⼈间,每个⼈是⼀个⽐特位。

每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。

⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起了新的名字叫:指针。

所以我们可以理解为:
内存单元的编号地址指针

在这里插入图片描述

1.2 究竟该如何理解编址
CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,⽽因为内存中字节很多,所以需要给内存进⾏编址(就如同宿舍很多,需要给宿舍编号⼀样)。

计算机中的编址,并不是把每个字节的地址记录下来,⽽是通过硬件设计完成的。

钢琴、吉他上⾯没有写上“剁、来、咪、发、唆、拉、西”这样的信息,但演奏者照样能够准确找到每⼀个琴弦的每⼀个位置,这是为何?因为制造商已经在乐器硬件层⾯上设计好了,并且所有的演奏者都知道。本质是⼀种约定出来的共识!

⾸先,必须理解,计算机内是有很多的硬件单 元,⽽硬件单元是要互相协同⼯作的。所谓的协 同,⾄少相互之间要能够进⾏数据传递。 但是硬件与硬件之间是互相独⽴的,那么如何通 信呢?答案很简单,⽤"线"连起来。 ⽽CPU和内存之间也是有⼤量的数据交互的,所 以,两者必须也⽤线连起来。 不过,我们今天关⼼⼀组线,叫做地址总线。

硬件编址也是如此
我们可以简单理解,32位机器有32根地址总线, 每根线只有两态,表⽰0,1【电脉冲有⽆】,那么 ⼀根线,就能表⽰2种含义,2根线就能表⽰4种含 义,依次类推。32根地址线,就能表⽰2^32种含 义,每⼀种含义都代表⼀个地址。 地址信息被下达给内存,在内存上,就可以找到 该地址对应的数据,将数据在通过数据总线传⼊ CPU内寄存器。

2. 指针变量和地址

2.1 取地址操作符(&)
理解了内存和地址的关系,我们再回到C语⾔,在C语⾔中创建变量其实就是向内存申请空间,⽐如:

 int main(){int a = 10;return 0;}

⽐如,上述的代码就是创建了整型变量a,内存中 申请4个字节,⽤于存放整数10,其中每个字节都 有地址,上图中4个字节的地址分别是:

 0x006FFD700x006FFD710x006FFD720x006FFD73

那我们如何能得到a的地址呢?
这⾥就得学习⼀个操作符(&)-取地址操作符

 #include <stdio.h>int main(){int a = 10;&a;printf("%p\n", &a);return 0;}

在这里插入图片描述

按照我画图的例⼦,会打印处理:006FFD70
&a取出的是a所占4个字节中地址较⼩的字节的地
址。

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可
⾏的。

2.2 指针变量和解引⽤操作符(*)

2.2.1 指针变量
那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如:0x006FFD70,这个数值有时候也是需要存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。
⽐如:

 #include <stdio.h>int main(){int a = 10;int * pa = &a; // 取出 a 的地址并存储到指针变量 pa 中return 0;}

指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。

2.2.2 如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?

 int a = 10;int * pa = &a;

这⾥pa左边写的是 int* , * 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int)类型的对象。
在这里插入图片描述
那如果有⼀个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?

char ch = 'w';
pc = &ch;//pc 的类型怎么写呢?

2.2.3 解引⽤操作符

我们将地址保存起来,未来是要使⽤的,那怎么使⽤呢?
在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。

C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。

 #include <stdio.h>int main(){int a = 100;int* pa = &a;*pa = 0;return 0;}

上⾯代码中第7⾏就使⽤了解引⽤操作符,* pa 的意思就是通过pa中存放的地址,找到指向的空间, * pa其实就是a变量了;所以*pa=0,这个操作符是把a改成了0.

有 UU 肯定在想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢?
其实这⾥是把a的修改交给了pa来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活,后期慢慢就能理解了。

2.3 指针变量的⼤⼩

前⾯的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。

如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。

同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要 8 个字节的空间,指针变量的⼤⼩就是 8 个字节。

#include <stdio.h>// 指针变量的⼤⼩取决于地址的⼤⼩ 
//32 位平台下地址是 32 个 bit 位(即 4 个字节) 
//64 位平台下地址是 64 个 bit 位(即 8 个字节)int main(){printf("%zd\n", sizeof(char *));printf("%zd\n", sizeof(short *));printf("%zd\n", sizeof(int *));printf("%zd\n", sizeof(double *));return 0;}

在这里插入图片描述
在这里插入图片描述

结论:
• 32位平台下地址是32个bit位,指针变量⼤⼩是4个字节
• 64位平台下地址是64个bit位,指针变量⼤⼩是8个字节
• 注意指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的。

3. 指针变量类型的意义

指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢?
其实指针类型是有特殊意义的,我们接下来继续学习。

3.1 指针的解引⽤
对⽐,下⾯2段代码,主要在调试时观察内存的变化。

#include <stdio.h>int main(){int n = 0x11223344;int *pi = &n; *pi = 0;   return 0;}
#include <stdio.h>
int main(){int n = 0x11223344;char *pc = (char *)&n;*pc = 0;return 0;}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。
结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。

⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

3.2 指针±整数

先看⼀段代码,调试观察地址的变化。

#include <stdio.h>
int main()
{int n = 10;char* pc = (char*)&n;int* pi = &n;printf("&n = %p\n", &n);printf("pc = %p\n", pc);printf("pc + 1 = %p\n", pc + 1);printf("pi = %p\n", pi);printf("pi + 1 = %p\n", pi + 1);return  0;
}

代码运⾏的结果如下:
在这里插入图片描述

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。 这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。指针可以+1,那也可 以-1。

结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

3.3 void 指针*

在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为⽆具体类型的指针(或者叫泛型指 针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性,void* 类型的指针不能直接进⾏指针的±整数和解引⽤的运算。

  #include <stdio.h>int main(){int a = 10;int* pa = &a;char* pc = &a;return 0;}

在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。⽽使⽤void类型就不会有这样的问题。
在这里插入图片描述
使⽤void*类型的指针接收地址:

 #include <stdio.h>int main(){int a = 10;void* pa = &a;void* pc = &a;*pa = 10;*pc = 0;return 0;}

VS编译代码的结果:
在这里插入图片描述

这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。

那么 void* 类型的指针到底有什么⽤呢?
⼀般 v oid* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以 实现泛型编程的效果。使得⼀个函数来处理多种类型的数据,在《深⼊理解指针(4)》中我们会讲解。

4. const修饰指针

4.1 const修饰变
变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。

 #include <stdio.h>int main(){int m = 0;m = 20;//m是可以修改的const int n = 0;n = 20;//n是不能被修改的return 0;}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就⾏修改,就不符合语法规则,就报错,致使没法直接修改n。

但是如果我们绕过n,使⽤n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。

#include <stdio.h>int main(){const int n = 0;printf("n = %d\n", n);int*p = &n;*p = 20;printf("n = %d\n", n);return 0;}

输出结果:
在这里插入图片描述

我们可以看到这⾥⼀个确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?

4.2 const修饰指针变量
⼀般来讲const修饰指针变量,可以放在的左边,也可以放在的右边,意义是不⼀样的。

 int * p;//没有const修饰int const * p;//const 放在*的左边做修饰int * const p;//const 放在*的右边做修饰

具体分析⼀下:

#include <stdio.h>//代码1 - 测试⽆const修饰的情况void test1(){int n = 10;int m = 20;int *p = &n;*p = 20;//ok?p = &m; //ok?}//代码2 - 测试const放在*的左边情况void test2(){int n = 10;int m = 20;const int* p = &n;*p = 20;//ok?p = &m; //ok?}//
代码3 - 测试const放在*的右边情况
void test3(){int n = 10;int m = 20;int * const p = &n;*p = 20; //ok?p = &m;  //ok?}// 代码 4 - 测试 * 的左右两边都有 const
void test4(){int n = 10;int m = 20;int const * const p = &n;*p = 20; //ok?p = &m;  //ok?}int main()
{// 测试⽆ const 修饰的情况 test1();// 测试 const 放在 * 的左边情况 test2();// 测试 const 放在 * 的右边情况 test3();// 测试 * 的左右两边都有 const test4();return 0;
}

结论:const修饰指针变量的时候
• const如果放在的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。 但是指针变量本⾝的内容可变。
• const如果放在
的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指 向的内容,可以通过指针改变。

5. 指针运算

指针的基本运算有三种,分别是:
• 指针±整数
• 指针-指针
• 指针的关系运算

5.1 指针±整数
因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。

int arr[10] = {1,2,3,4,5,6,7,8,9,10};

在这里插入图片描述

#include <stdio.h>
//指针+- 整数int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };int* p = &arr[0];int i = 0;int sz = sizeof(arr) / sizeof(arr[0]);for (i = 0; i < sz; i++){printf("%d ", *(p + i));//p+i 这⾥就是指针	+整数}return 0;
}

5.2 指针-指针

 //指针--指针#include <stdio.h>int my_strlen(char *s){char *p = s;while(*p != '\0' )p++;return p-s;}int main(){printf("%d\n", my_strlen("abc"));return 0;}

5.3 指针的关系运算

// 指针的关系运算
#include <stdio.h>
int main(){int arr[10] = {1,2,3,4,5,6,7,8,9,10};int *p = &arr[0];int sz = sizeof(arr)/sizeof(arr[0]);while(p<arr+sz) //指针的⼤⼩⽐较{printf("%d ", *p);p++;}return 0;}

6. 野指针

概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

6.1 野指针成因

6.1.1 指针未初始化

 #include <stdio.h>int main(){        int *p;//局部变量指针未初始化,默认为随机值*p = 20;return 0;}

6.1.2 指针越界访问

#include <stdio.h>
int main()
{int arr[10] = { 0 };int* p = &arr[0];int i = 0;for (i = 0; i <= 11; i++){// 当指针指向的范围超出数组 arr 的范围时, p 就是野指针*(p++) = i;}return 0;
}

6.1.3 指针指向的空间释放

 #include <stdio.h>int* test(){int n = 100;return &n;}int main()
{int*p = test();printf("%d\n", *p);return 0;
}

6.2 如何规避野指针

6.2.1 指针初始化
如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL.
NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址 会报错。

 #ifdef __cplusplus#define NULL 0#else#define NULL ((void *)0)#endif

初始化如下:

#include <stdio.h>
int main()
{int num = 10;int* p1 = &num;int* p2 = NULL;return 0;
}

6.2.2 ⼩⼼指针越界
⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。

6.2.3 指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的 时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问, 同时使⽤指针之前可以判断指针是否为NULL。

我们可以把野指针想象成野狗,野狗放任不管是⾮常危险的,所以我们可以找⼀棵树把野狗拴起来, 就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓起来,就是把野指针暂时管理起来。

不过野狗即使拴起来我们也要绕着⾛,不能去挑逗野狗,有点危险;对于指针也是,在使⽤之前,我 们也要判断是否为NULL,看看是不是被拴起来起来的野狗,如果是不能直接使⽤,如果不是我们再去使⽤。

int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };int* p = &arr[0];int i = 0;for (i = 0; i < 10; i++){*(p++) = i;}//	此时	p	已经越界了,可以把	p置为	NULLp = NULL;//下次使⽤的时候,判断p不为NULL的时候再使⽤//...p = &arr[0];//	重新让p获得地址if (p != NULL) //判断{//...}return 0;
}

6.2.4 避免返回局部变量的地址
如造成野指针的第3个例⼦,不要返回局部变量的地址。

7. assert断⾔

assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报 错终⽌运⾏。这个宏常常被称为“断⾔”。

assert(p != NULL);

上⾯代码在程序运⾏到这⼀⾏语句时,验证变量p是否等于NULL 。如果确实不等于NULL ,程序继续运⾏,否则就会终⽌运⾏,并且给出报错信息提⽰。

assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零),assert() 不会产⽣任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零),assert() 就会报错,在标准错误流 stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。

assert() 的使⽤对程序员是⾮常友好的,使⽤ assert() 有⼏个好处:它不仅能⾃动标识⽂件和 出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问题,不需要再做断⾔,就在 #include 语句的前⾯,定义⼀个宏NDEBUG 。

 #define NDEBUG#include <assert.h>

然后,重新编译程序,编译器就会禁⽤⽂件中所有的assert() 语句。如果程序⼜出现问题,可以移除这条#define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert() 语句。

assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运⾏时间。

⼀般我们可以在 Debug 中使⽤,在Release 版本中选择禁⽤ assert 就⾏,在 VS 这样的集成开发环境中,在Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在 Release 版本不影响⽤⼾使⽤时程序的效率。

8. 指针的使⽤和传址调⽤

8.1 strlen的模拟实现
库函数strlen的功能是求字符串⻓度,统计的是字符串中 \0 之前的字符的个数。

 size_t strlen ( const char * str );

参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。 如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是\0 字符,计数器就+1,这样直到 \0 就停⽌。

int my_strlen(const char* str)
{int count = 0;assert(str);while (*str){count++;str++;}return count;
}int main()
{int len = my_strlen("abcdef");printf("%d\n", len);return 0;
}

8.2 传值调⽤和传址调⽤
学习指针的⽬的是使⽤指针解决问题,那什么问题,⾮指针不可呢?

例如:写⼀个函数,交换两个整型变量的值
⼀番思考后,我们可能写出这样的代码:

void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a = % d b = % d\n", a, b);Swap1(a, b);printf(" 交换后: a=%d b=%d\n", a, b);return 0;
}

在这里插入图片描述

我们发现其实没产⽣交换的效果,这是为什么呢?

咱们调试⼀下:
在这里插入图片描述

我们发现在main函数内部,创建了a和b,a的地址是0x00cffdd0,b的地址是0x00cffdc4,在调⽤ Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是 x的地址是0x00cffcec,y的地址是0x00cffcf0,x和y确实接收到了a和b的值,不过x的地址和a的地址不 ⼀样,y的地址和b的地址不⼀样,相当于x和y是独⽴的空间,那么在Swap1函数内部交换x和y的值, ⾃然不会影响a和b,当Swap1函数调⽤结束后回到main函数,a和b的没法交换。Swap1函数在使⽤的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式我们之前在函数的时候就知道了,这 种叫传值调⽤。

结论:实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实 参。 所以Swap1是失败的了。

我们现在要解决的就是当调⽤Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。那么就可以使⽤指针了,在main函数中将a和b的地址传递给Swap函数,Swap
函数⾥边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。

void Swap2(int* px, int* py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap2(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

在这里插入图片描述

我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传递给了函数,这种函数调⽤⽅式叫:传址调⽤。

传址调⽤,可以让函数和主调函数之间建⽴真正的联系,在函数内部可以修改主调函数中的变量;所 以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调⽤。如果函数内部要修改 主调函数中的变量的值,就需要传址调⽤。

到这里就是对指针的初步了解了,博主会在后面的文章中继续为大家分享指针的知识,还望大家多多支持!!!


http://www.mrgr.cn/news/75136.html

相关文章:

  • DataWorks快速入门
  • SQL 语句执行计划中的连接方式
  • JAVA八股与代码实践----JDK代理和CGLIB代理的区别
  • 【初阶数据结构篇】双向链表的实现(赋源码)
  • Diwata:一款强大的开源数据库管理工具
  • 基于MATLAB的相机内参标定及其原理——附实现教程
  • 【计算机网络】Socket编程接口
  • 【MinIO】Python 运用 MinIO 实现简易文件系统
  • WLAN消失或者已连接但是访问不了互联网
  • SpringSecurity+jwt+captcha登录认证授权总结
  • 程序员的数学之进制与零
  • Flink1.19编译并Standalone模式本地运行
  • 保姆级教程,免费短链平台
  • cache缺失和关联度
  • sqlmap使用教程
  • Python 异常处理试卷
  • 【HarmonyOS】鸿蒙系统在租房项目中的项目实战(一)
  • 大语言模型LLM综述
  • GRU(门控循环单元)详解
  • Siggraph Asia 2024 | Adobe发布MagicClay:可通过文字引导去对3D模型中的特定部分进行雕刻
  • 【今天的乐子】你真懂代码吗?挑战这10个笑话,程序员专属梗了解一下
  • C++《继承》
  • 企业运营的智能化升级:AI助理与SOP的融合之道
  • java八股-jvm入门-程序计数器,堆,元空间,虚拟机栈,本地方法栈,类加载器,双亲委派,类加载执行过程
  • 线程的状态有哪些?它是如何工作的?
  • SMA-BP基于黏菌算法优化BP神经网络时间序列预测