当前位置: 首页 > news >正文

普通电脑上安装属于自己的Llama 3 大模型和对话客户端

#大模型下载地址:#

Llama3

因为Hugging Face官网正常无法访问,因此推荐国内镜像进行下载:

官网地址:https://huggingface.co

国内镜像:https://hf-mirror.com

GGUF 模型文件名称接受,如上述列表中,有Meta-Llama-3-8B-Instruct.Q4_K_M.gguf和Meta-Llama-3-8B-Instruct.Q5_K_M.gguf等:

Instruct代表本模型是对基线模型进行了微调,用于更好地理解和生成遵循指令(instruction-following)的文本,以提供符合要求的响应

Q4/Q5 等代表模型权重的量化位数(其中Q是Quantization的缩小,即量化),是一种模型压缩技术,用于减少模型大小,同时降低对计算资源的需求(特别是内存),但又尽量保持模型的性能;数字4或5则代表量化精度的位数(Q4 是 4 位,Q5 是 5 位等),精度越高模型体积和内存使用也会越大,但仍然远小于未量化的基线模型

K_M/K_S代表含义笔者还未明确,K可能是Knowledge的缩写;M应该是Medium缩写(即中等模型),S应该是Small缩小(即小模型);若有明确的朋友,还望不吝告知,共同进步!

若个人电脑配置不是特别好,我们可以选择Q2_K版本(大小 3.2GB),它相较于Q4_K_M版本(大小 4.9GB),Q2版本的推理精度较低,但速度较快,而Q4版本在速度和精度之间均取得了很好的平衡,因此首选推荐Q4_K_M版本。

# 打开两个CMD终端:
# cd D:\pythonProject
# .\venv\Scripts\activate#终端一
 python -m llama_cpp.server --host 0.0.0.0 --model models\\Publisher\\Repository\\Meta-Llama-3-8B-Instruct.Q2_K.gguf
#终端二
python Llama3-ChatAPI.py

Llama3-ChatAPI.py代码:

from openai import OpenAI# 注意服务端端口,因为是本地,所以不需要api_key
client = OpenAI(base_url="http://localhost:8000/v1",api_key="not-needed")# 对话历史:设定系统角色是一个只能助理,同时提交“自我介绍”问题
history = [{"role": "system", "content": "你是一个智能助理,你的回答总是正确的、有用的和内容非常精简."},{"role": "user", "content": "请用中文进行自我介绍,要求不能超过5句话,总字数不超过100个字。"},
]
print("\033[92;1m")# 首次自我介绍完毕,接下来是等代码我们的提示
while True:completion = client.chat.completions.create(model="local-model",messages=history,temperature=0.7,stream=True,)new_message = {"role": "assistant", "content": ""}for chunk in completion:if chunk.choices[0].delta.content:print(chunk.choices[0].delta.content, end="", flush=True)new_message["content"] += chunk.choices[0].delta.contenthistory.append(new_message)print("\033[91;1m")userinput = input("> ")if userinput.lower() in ["bye", "quit", "exit"]: # 我们输入bye/quit/exit等均退出客户端print("\033[0mBYE BYE!")breakhistory.append({"role": "user", "content": userinput})print("\033[92;1m")

启动成功,恭喜你,你已经迈入 Llama 大模型大厦的大门了,后面存在无限可能,就看我们的创意了!


http://www.mrgr.cn/news/72362.html

相关文章:

  • ESP32,uart安装驱动uart_driver_install函数剖析,以及intr_alloc_flags 参数的意义
  • WINFORM - DevExpress -> gridcontrol拖拽行记录排序
  • ThreeJs练习——载入外部模型
  • 数据结构(Java版)第七期:LinkedList与链表(二)
  • python学opencv|读取图像(三十三)阈值处理图像-限定像素
  • vue2修改表单只提交被修改的数据的字段传给后端接口
  • ElegantRL:高效、稳定的深度强化学习开源框架
  • Macos mysql实现命令自动补全的方法
  • 怎么把模糊照片变清晰?4种方法助你修复图片清晰度!
  • nacos-operator在k8s集群上部署nacos-server2.4.3版本踩坑实录
  • MongoDB在现代Web开发中的应用
  • 「IDE」集成开发环境专栏目录大纲
  • ssm107电动车租赁网站+jsp(论文+源码)_kaic
  • 数据分析-系统认识数据分析
  • Linux编程:嵌入式ARM平台Linux网络实时性能优化
  • 第3章: 图像增强与色彩处理
  • 基于HFSS软件的滤波器设计
  • 货拉拉四次冲刺业绩向好:净变现率下滑,司机大量投诉及权益保护仍亟待完善
  • spring-gateway网关聚合swagger实现多个服务接口切换
  • 【学习】【HTML】HTML、XML、XHTML
  • 运行springBlade项目历程
  • 论云游戏的性能与性价比,ToDesk、青椒云、顺网云游戏等具体实操看这篇就够了
  • 上海亚商投顾:沪指放量调整 全市场近3800只个股下跌
  • 关于我、重生到500年前凭借C语言改变世界科技vlog.18——内存函数
  • Rocky linux8 安装php8.0
  • CesiumJS 案例 P27:创建椭圆、创建带边框的椭圆、创建圆、创建带边框的圆、创建椭圆环、创建圆环