当前位置: 首页 > news >正文

LoRA(Low-Rank Adaptation)

        LoRA(Low-Rank Adaptation)是一种用于微调Stable Diffusion模型的训练技术,尤其在大规模预训练模型的微调过程中被广泛应用。它的主要目的是通过减少需要更新的参数数量来提高微调的效率,特别是在计算资源有限的情况下。

        注:Stable Diffusion 是一种基于深度学习的文本到图像生成模型,它能够根据用户提供的文本描述生成高质量的图像。其主要基于扩散模型(Diffusion Model)的原理,模型在大量的图像和文本对上进行训练,学习如何将文本描述映射到相应的图像特征,通过逐步引入噪声,模型学习如何从一个简单的噪声图像生成复杂的图像,在生成图像时,模型会从随机噪声开始,并逐步去噪,直到生成符合输入文本描述的图像。

LoRA 的基本原理

  1. 低秩矩阵分解:LoRA 通过将权重矩阵分解为两个低秩矩阵,从而减少了模型在微调时需要更新的参数数量。这种方式使得在不改变原有模型结构的情况下,可以快速适应新任务。
  2. 冻结预训练模型:在应用 LoRA 时,通常会将预训练模型的权重保持不变,只对低秩矩阵进行训练。这样可以显著降低训练所需的计算资源和内存使用。
  3. 提高泛化能力:通过仅更新少量参数,LoRA 可以减少过拟合的风险,同时保持模型的泛化能力。

LoRA 的应用场景

  1. 自然语言处理:在文本生成、情感分析等任务中,通过使用 LoRA 可以有效地微调大型语言模型。
  2. 计算机视觉:在图像分类、目标检测等任务中,LoRA 同样可以被用于微调视觉模型。
  3. 跨领域应用:LoRA 的灵活性使其可以在多个领域中快速适应新任务。

优势

  1. 节省计算资源:由于只需更新少量参数,LoRA 可以显著减少所需的计算资源和内存。
  2. 快速微调:在新的任务上进行微调的速度更快,适合快速迭代的研究环境。
  3. 适应性强:能够在不同任务和领域之间灵活应用,提高模型的适应能力。

http://www.mrgr.cn/news/70534.html

相关文章:

  • 1小时构建Vue3知识体系之vue的生命周期函数
  • 智慧医疗:纹理特征VS卷积特征
  • Qt 获取当前系统中连接的所有USB设备的信息 lsusb版
  • 【Linux】自动化构建工具-make/Makefile
  • CCF ChinaOSC |「开源科学计算与系统建模openSCS专题分论坛」11月9日与您相约深圳
  • OSG开发笔记(三十一):OSG中LOD层次细节模型介绍和使用
  • 基于STM32的自行车户外运动系统设计
  • AIGC小红书新赛道,两个平台同时发,操作简单
  • 地下水数值模拟、 地下水环评、Visual modflow Flex、Modflow
  • 如何利用GNB外链提升网站的自然曝光!
  • FPGA实现光纤通信(2)——光纤眼图测试
  • Tidb数据恢复
  • 监控架构-Prometheus-普罗米修斯
  • QML —— ListView代理,附横向滑动效果(附源码)
  • 游戏引擎中LOD渲染技术
  • 【Linux探索学习】第十二弹——初识进程:进程的定义、描述和一些简单的相关操作
  • 软件测试计划和测试用例详解
  • Polybase要求安装orcale jre 7
  • 【随笔】做售前工程师的一些感悟
  • 卡内基音乐厅回响肖邦旋律:旅美钢琴学者何超与导师洪勋的师生情缘
  • Cesium基础-(Entity)-(label )
  • ggalign:热图等复杂组合图及图形数据对齐的 ggplot2 扩展
  • 计算机在启动一直到系统加载完成期间进行了哪些操作
  • 【缠论箱体预测】主图指标 缠论自动划箱体 看透压力支撑对趋势胸有成竹 (电脑+手机源码)
  • 206面试题(47~60)
  • fask的一个程序