【数据集】【YOLO】【目标检测】摔跤识别数据集 5097 张,YOLO行人摔倒识别算法实战训练教程!
一、数据集介绍
【数据集】行人摔倒识别数据集 5097 张,目标检测,包含YOLO/VOC格式标注。
数据集中包含2种分类:{'0': 'Fallen', '1', 'Falling'},代表摔倒的人和正在摔倒的人,都表示摔倒状态。
数据集来自国内外图片网站和视频截图;
可用于无人机行人摔倒检测、监控下行人摔倒检测等。
检测场景为道路、景区、施工地、运动场等人员摔倒检测,可用于智慧景区、智慧城市、智慧交通等,服务于道路行人安全保护、景区人流量安全预警等。
数据集中含有部分负样本数据,为了区分摔跤和站立的人。
1、数据概述
摔跤识别的重要性
-
人口老龄化问题:随着全球人口老龄化的加剧,老年人摔倒问题日益突出,摔倒已成为老年人伤害和死亡的主要原因之一。因此,摔倒识别技术在医疗保健、安防和智能家居等领域具有广泛的应用前景。
-
技术发展趋势:近年来,随着人工智能技术的快速发展,特别是深度学习在图像识别和目标检测领域的广泛应用,摔倒识别技术取得了显著进步。YOLO作为一种单阶段目标检测算法,以其速度快、精度高而备受关注。
基于YOLO的摔跤识别算法
-
原理:YOLO算法将目标检测任务分解为边界框预测和分类任务。它使用一个神经网络同时预测图像中的所有对象及其边界框,实现了端到端的预测。YOLOv5作为YOLO系列的最新版本,在速度和精度上都有了显著提升。
-
数据采集与标注:摔倒数据集的收集和标注是摔倒识别系统开发的关键步骤。数据必须多样化且具有代表性,以确保模型在不同场景和条件下都能准确识别摔倒。标注过程包括定义摔倒的标准、标记摔倒的开始和结束帧以及标注人体关键点等。
-
模型训练与优化:使用收集到的数据集对YOLOv5模型进行训练,并通过数据增强技术增加数据集的多样性,防止模型过拟合。训练过程中需要优化超参数,如学习率、批量大小和正则化参数等,以提高模型的性能。
该数据集含有 5097 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试道路、景区、施工地、运动场等人员摔倒检测情况。
图片格式为jpg格式,标注格式分别为:
YOLO:txt
VOC:xml
数据集均为手工标注,保证标注精确度。
2、数据集文件结构
person_fall/
——test/
————Annotations/
————images/
————labels/
——train/
————Annotations/
————images/
————labels/
——valid/
————Annotations/
————images/
————labels/
——data.yaml
- 该数据集已划分训练集样本,分别是:test目录(测试集)、train目录(训练集)、valid目录(验证集);
- Annotations文件夹为Pascal VOC格式的XML文件 ;
- images文件夹为jpg格式的数据样本;
- labels文件夹是YOLO格式的TXT文件;
- data.yaml是数据集配置文件,包含摔跤识别的目标分类和加载路径。
Annotations目录下的xml文件内容如下:
<annotation><folder></folder><filename>image_76_jpg.rf.6438e32bd6f8e15c9d034ab2064aeee5.jpg</filename><path>image_76_jpg.rf.6438e32bd6f8e15c9d034ab2064aeee5.jpg</path><source><database>roboflow.com</database></source><size><width>640</width><height>640</height><depth>3</depth></size><segmented>0</segmented><object><name>Fallen</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><occluded>0</occluded><bndbox><xmin>25</xmin><xmax>463</xmax><ymin>375</ymin><ymax>641</ymax></bndbox></object>
</annotation>
3、数据集适用范围
- 目标检测场景,无人机检测或监控识别
- yolo训练模型或其他模型
- 道路、景区、施工地、运动场等人员摔倒检测
- 可用于智慧景区、智慧城市、智慧交通等,服务于道路行人安全保护、景区人流量安全预警
4、数据集标注结果
4.1、数据集内容
- 多角度场景:包含无人机视角、监控视角、行人拍摄视角等;
- 标注内容:names: ['Fallen', 'Falling'],总计2个分类;
- 图片总量:5097 张图片数据;
- 标注类型:含有Pascal VOC XML格式和yolo TXT格式;
- 负样本数据:数据集中含有一定量的负样本数据,目的是区分摔倒的人和站立的人,防止误检。
5、训练过程
5.1、导入训练数据
下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。
下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。
在ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。
data目录结构如下:
data/
——Annotations/ //存放xml文件
——images/ //存放jpg图像
——imageSets/
——labels/
整体项目结构如下所示:
5.2、数据分割
首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。
import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
5.3、数据集格式化处理
这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。
convert_annotation函数
-
这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。
-
它打开XML文件,解析树结构,提取图像的宽度和高度。
-
然后,它遍历每个目标对象(
object
),检查其类别是否在classes
列表中,并忽略标注为困难(difficult
)的对象。 -
对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用
convert
函数将坐标转换为YOLO格式。 -
最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['Fallen', 'Falling'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()
5.4、修改数据集配置文件
train: ../train/images
val: ../valid/images
test: ../test/imagesnc: 2
names: ['Fallen', 'Falling']
5.5、执行命令
执行train.py
model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)
也可以在终端执行下述命令:
yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0
5.6、模型预测
你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。
代码如下:
import cv2
from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) # Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 inference on the frame# results = model(frame)results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)results[0].names[0] = "道路积水"# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output fileout.write(annotated_frame)# Display the annotated frame (optional)cv2.imshow("YOLOv8 Inference", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()
也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:
yolo predict model="best.pt" source='demo.jpg'
6、获取数据集
添加我“头像”获取数据,或者主页私聊博主哈~
二、基于QT的目标检测可视化界面
1、环境配置
# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
2、使用说明
界面功能介绍:
- 原视频/图片区:上半部分左边区域为原视频/图片展示区;
- 检测区:上半部分右边区域为检测结果输出展示区;
- 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等;
- 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
- 置信度阈值:自定义检测区的置信度阈值,可以通过滑动条的方式设置;
- 文件上传:选择目标文件,包含JPG格式和MP4格式;
- 开始检测:执行检测程序;
- 停止:终止检测程序;
3、预测效果展示
3.1、图片检测
切换置信度再次执行:
上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。
3.2、视频检测
3.3、日志文本框
4、前端代码
class MyWindow(QtWidgets.QMainWindow):def __init__(self):super().__init__()self.init_gui()self.model = Noneself.timer = QtCore.QTimer()self.timer1 = QtCore.QTimer()self.cap = Noneself.video = Noneself.file_path = Noneself.base_name = Noneself.timer1.timeout.connect(self.video_show)def init_gui(self):self.folder_path = "model_file" # 自定义修改:设置文件夹路径self.setFixedSize(1300, 650)self.setWindowTitle('目标检测') # 自定义修改:设置窗口名称self.setWindowIcon(QIcon("111.jpg")) # 自定义修改:设置窗口图标central_widget = QtWidgets.QWidget(self)self.setCentralWidget(central_widget)main_layout = QtWidgets.QVBoxLayout(central_widget)# 界面上半部分: 视频框topLayout = QtWidgets.QHBoxLayout()self.oriVideoLabel = QtWidgets.QLabel(self)# 界面下半部分: 输出框 和 按钮groupBox = QtWidgets.QGroupBox(self)groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')bottomLayout = QtWidgets.QHBoxLayout(groupBox)main_layout.addWidget(groupBox)btnLayout = QtWidgets.QHBoxLayout()btn1Layout = QtWidgets.QVBoxLayout()btn2Layout = QtWidgets.QVBoxLayout()btn3Layout = QtWidgets.QVBoxLayout()# 创建日志打印文本框self.outputField = QtWidgets.QTextBrowser()self.outputField.setFixedSize(530, 180)self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')self.detectlabel = QtWidgets.QLabel(self)self.oriVideoLabel.setFixedSize(530, 400)self.detectlabel.setFixedSize(530, 400)self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')topLayout.addWidget(self.oriVideoLabel)topLayout.addWidget(self.detectlabel)main_layout.addLayout(topLayout)
5、代码获取
YOLO可视化界面
添加我“头像”获取数据,或者主页私聊博主哈~
注:以上均为原创内容,转载请私聊!!!