当前位置: 首页 > news >正文

一文彻底搞懂大模型 - Dify(Agent + RAG)

Dify

Dify 是一个用于构建 AI 应用程序的开源平台。Dify融合了后端即服务(Backend as Service)和LLMOps理念。它支持多种大型语言模型,如Claude3、OpenAI等,并与多个模型供应商合作,确保开发者能根据需求选择最适合的模型。Dify通过提供强大的数据集管理功能、可视化的Prompt编排以及应用运营工具,大大降低了AI应用开发的复杂度。

img

Dify

一、Dify

什么是Dify(Define & Modify)?Dify是一个开源的大语言模型(LLM)应用开发平台,旨在简化和加速生成式AI应用的创建和部署。该平台结合了后端即服务(Backend as Service, BaaS)和LLMOps的理念,为开发者提供了*一个用户友好的界面和一系列强大的工具,使他们能够快速搭建生产级的AI应用。

img
Dify

  1. 低代码/无代码开发:Dify通过可视化的方式允许开发者轻松定义Prompt、上下文和插件等,无需深入底层技术细节。
  2. 模块化设计:Dify采用模块化的设计,每个模块都有清晰的功能和接口,开发者可以根据需求选择性地使用这些模块来构建自己的AI应用。
  3. 丰富的功能组件:平台提供了包括AI工作流、RAG管道、Agent、模型管理等丰富功能组件,帮助开发者从原型到生产的全过程。
  4. 支持多种大语言模型:Dify已支持主流的模型,开发者能够根据自己的需求选择最适合的模型来构建AI应用。

img

Dify

Dify提供四种基于LLM构建的应用程序,可以针对不同的应用场景和需求进行优化和定制。

img

Dify

  1. 聊天助手(Chat Assistant):

    • 基于LLM的对话助手,能够与用户进行自然语言交互,理解用户的问题、请求或指令,并给出相应的回答或执行相应的操作。
  2. 文本生成(Text Generation):

    • 专注于各种文本生成任务,如撰写故事、新闻报道、文案、诗歌等创意写作,以及文本分类、翻译等任务。
  3. Agent(智能代理):

    • 这种助手不仅具备对话能力,还具备任务分解、推理、工具调用等高级能力。它能够理解复杂的指令,将任务分解为多个子任务,并调用相应的工具或API来完成这些子任务。
  4. 工作流程(Workflow):

    • 根据用户定义的流程编排,灵活地组织和控制LLM的工作流程。用户可以自定义一系列的操作步骤和逻辑判断,让LLM按照预定的流程执行任务。

img

Dify

二、Dify + RAG

如何将文档上传到Dify知识库构建RAG?将文档上传到Dify知识库的过程涉及多个步骤,从文件选择、预处理、索引模式选择到检索设置**,旨在构建一个高效、智能的知识检索系统。**

1. 创建知识库:Dify主导航栏中的“知识”,在此页面可以看到已有的知识库。

  • 创建新知识库:拖放或选择要上传的文件,支持批量上传,但数量受订阅计划限制。
  • 空知识库选项:如果尚未准备文档,可选择创建空知识库。
  • 外部数据源:使用外部数据源(如Notion或网站同步)时,知识库类型将固定,建议为每个数据源创建单独知识库。

img

2. 文本预处理与清理:内容上传到知识库之后,需要进行分块和数据清洗,这个阶段可以理解为内容的预处理和结构化。

  • 自动模式:Dify自动分割和清理内容,简化文档准备流程。

img

  • 自定义模式:对于需要更精细控制的情况,可选择自定义模式进行手动调整。

img

3. 索引模式:根据应用场景选择合适的索引模式,如高质量模式、经济模式或问答模式。

  • 高质量模式:利用Embedding模型将文本转换为数值向量,支持向量检索、全文检索和混合检索。

img

  • 经济模式:采用离线向量引擎和关键字索引,虽然准确率有所降低,但省去了额外的 token 消耗和相关成本。

img

  • 问答模式: 系统会进行文本分词,并通过摘要的方式,为每段生成QA问答对。

img

4. 检索设置:

(1)在高质量索引模式下,Dify 提供三种检索设置:向量搜索、全文搜索、混合搜索

  • 向量搜索:将查询向量化,计算与知识库中文本向量的距离,识别最接近的文本块。

img

  • 全文搜索:基于关键字匹配进行搜索。

img

  • 混合搜索:结合向量搜索和全文搜索的优势。

img

  • Rerank模型:对检索结果进行语义重排序,优化排序结果。

(2)在经济索引模式下,Dify 提供单一检索设置:倒排索引和TopK

  • 倒排索引:一种为快速检索文档中的关键字而设计的索引结构。
  • TopK和分数阈值:设置检索结果的数量和相似度阈值。

img

三、Dify + Agent

如何在Dify平台搭建Agent?在Dify平台上,通过选择模型、编写提示、添加工具与知识库、配置推理模式及对话开启器,最后进行调试预览并发布为Webapp,实现Agent的创建与部署。

1. 探索与集成应用模板

Dify平台提供了丰富的“探索”(Explore)部分,其中包含多个代理助理的应用模板。用户可以直接将这些模板集成到自己的工作区中,快速开始使用。同时还允许用户创建自定义代理助理,以满足特定的个人或组织需求。

img

2. 选择推理模型

代理助理的任务完成能力很大程度上取决于所选LLM模型的推理能力。建议使用如GPT-4等更强大的模型系列,以获得更稳定、更精确的任务完成结果。

img

3. 编写提示与设置流程

在“说明”(Instructions)部分,用户可以详细编写代理助理的任务目标、工作流程、所需资源和限制条件等提示信息。这些信息将帮助代理助理更好地理解并执行任务。

img

4. 添加工具与知识库
  • 工具集成:在“工具”(Tools)部分,用户可以添加各种内置或自定义工具,以增强代理助理的功能。这些工具可以包括互联网搜索、科学计算、图像创建等,帮助代理助理与现实世界进行更丰富的交互。
  • 知识库:在“上下文”(Context)部分,用户可以整合知识库工具,为代理助理提供外部背景知识和信息检索能力。

img

5. 推理模式设置

Dify支持两种推理模式:Function Calling和ReAct。

img

  • Function Calling:对于支持该模式的模型(如GPT-3.5、GPT-4),建议使用此模式以获得更好更稳定的性能。
  • ReAct:对于不支持Function Calling的模型系列,Dify提供了ReAct推理框架作为替代方案,以实现类似的功能。
6. 配置对话开启器

用户可以为代理助理设置对话开场白和初始问题,以便在用户首次与代理助理交互时,展示其可以执行的任务类型和可以提出的问题示例。

img

7. 调试与预览

在将代理助理发布为应用程序之前,用户可以在Dify平台上进行调试和预览,以评估其完成任务的有效性和准确性。

img

8. 应用程序发布

一旦代理助理配置完成并经过调试,用户就可以将其发布为Web应用程序(Webapp),供更多人使用。这将使得代理助理的功能和服务能够跨平台、跨设备地提供给更广泛的用户群体。

img

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。


http://www.mrgr.cn/news/66857.html

相关文章:

  • Hive操作库、操作表及数据仓库的简单介绍
  • 【CSS】标准怪异盒模型
  • ClickHouse数据库SSL配置和SSL连接测试
  • C++中STL的list类常用接口及其源码解析
  • HCIP(7)-边界网关协议BGP基本配置(对等体peer,宣告network,引入import)
  • 四元数是复数在四维空间的扩展,它包含一个实部和三个不同的虚数单位。
  • 会议室有了智能中控系统价值,会议效率和效果还不飞升。
  • 自动化运维
  • 前端面筋(持续更新)
  • GESP4级考试语法知识(算法概论(一))
  • 会话技术 Cookie和Session对象
  • golang安装,常用框架安装,记忆点
  • 2024系统架构师---论软件系统架构风格论文
  • Elasticsearch与Redis的Netty冲突
  • flink 内存配置(四):内存调优和问题处理
  • mysql5安全审计
  • 使用Python编写一个微信机器人
  • AIGC在游戏设计中的应用及影响
  • flutter区别于vue的写法
  • vue通过iframe方式嵌套grafana图表
  • python安装selenium,geckodriver,chromedriver,Selenium IDE
  • ei会议检索!智能控制、测量、信号系统等方向可投!
  • Linux(CentOS)安装 JDK
  • Nvidia突袭AI江湖!悄悄发布新模型,完爆OpenAI和Anthropic?
  • 美国最欢迎这些人!盘点10大移民美国最具优势职业!
  • 【Git】Git常用命令