当前位置: 首页 > news >正文

C语言进阶:二.数据的存储(2)

❤个人主页❤:折枝寄北-CSDN博客

❤学习专栏❤:

C语言专栏:https://blog.csdn.net/2303_80170533/category_12794764.html?spm=1001.2014.3001.5482icon-default.png?t=O83Ahttps://blog.csdn.net/2303_80170533/category_12794764.html?spm=1001.2014.3001.5482

在上一篇文章中C语言进阶:一.数据的存储(1)-CSDN博客,学习了数据类型和整数在内存中是以什么样的形式存储,在这篇博客中,进一步学习关于浮点数的存储。

1.大小端的小练习

1.1百度2015年系统工程师笔试题

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。

//1 小端
//0 大端
int check()
{int a = 1;char* p = (char*)&a;if (*p == 1)return 1;else return 0;
}int main()
{int ret = check();if (1 == ret)printf("小端\n");elseprintf("大端\n");return 0;
}

对代码进行小优化

//简化代码1
int check()
{int a = 1;if (*(char*)&a== 1)return 1;elsereturn 0;
}int main()
{int ret = check();if (1 == ret)printf("小端\n");elseprintf("大端\n");return 0;
}//简化代码2
int check()
{int a = 1;return *(char*)&a;}int main()
{int ret = check();if (1 == ret)printf("小端\n");elseprintf("大端\n");return 0;
}

1.2练习题

习题一:最终输出结果为?(代码注释对结果进行了解释)

int main()
{char a = -1;//存8bit// -1是整数,32bit// 10000000 00000000 00000000 00000001// 11111111 11111111 11111111 11111110// 11111111 11111111 11111111 11111111// 发生截断,11111111--->a// 11111111 11111111 11111111 11111111(补码) %d--整型提升//打印原码signed char b = -1;//与char一致//unsigned char c = -1;// 10000000 00000000 00000000 00000001// 11111111 11111111 11111111 11111110// 11111111 11111111 11111111 11111111// 11111111// 无符号数,整型提升,高位补0// 00000000 00000000 00000000 11111111(255)printf("a=%d b=%d c=%d", a, b, c);//%d打印有符号的整数//return 0;
}

习题二:最终输出结果为?(代码注释对结果进行了解释)

int main()
{char a = -128;//10000000 00000000 00000000 10000000(-128原码)//11111111 11111111 11111111 01111111//11111111 11111111 11111111 10000000(-128补码)//10000000截断//11111111 11111111 11111111 10000000整型提升//%u是无符号数的打印,则整型提升的数就是正整数,直接转化为十进制得出答案printf("%u\n", a);return 0;
}

习题三:最终输出结果为?(代码注释对结果进行了解释)

int main()
{char a = -128;//10000000 00000000 00000000 10000000(-128原码)//11111111 11111111 11111111 01111111//11111111 11111111 11111111 10000000(-128补码)//10000000截断//11111111 11111111 11111111 10000000整型提升//%u是无符号数的打印,则整型提升的数就是正整数,直接转化为十进制得出答案printf("%u\n", a);return 0;
}

习题四:最终输出结果为?(代码注释对结果进行了解释)

int main()
{int i = -20;//10000000 00000000 00000000 00010100(-20原码)//11111111 11111111 11111111 11101011 (反码)//11111111 11111111 11111111 11101100(-20补码)//00000000 00000000 00000000 00001010(10的补码)//11111111 11111111 11111111 11110110(结果的补码)//-10unsigned int j = 10;printf("%d\n", i + j);//-10return 0;
}

2.浮点型在内存中的存储

2.1  浮点数存储的示例

int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);//printf("*pFloat的值为:%f\n", *pFloat);//*pFloat = 9.0;printf("n的值为:%d\n", n);//printf("*pFloat的值为:%f\n", *pFloat);//return 0;
}

输出结果是什么呢?

是不是与你所想的结果有所差异呢?下面我们来分析产生这个结果的原理。

2.2  浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位。

举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。 十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位 浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;

如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。

指数E从内存中取出还可以再分成三种情况:

1.E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,

则其二进制表示形式为:0 01111110 00000000000000000000000

2.E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

3.E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);


http://www.mrgr.cn/news/66529.html

相关文章:

  • C++《list的模拟实现》
  • Vue.js组件开发:构建高效、可复用的前端应用
  • 柯桥零基础学日语日语培训中为什么不说「ご客様」而是「お客様」?
  • 怎样用示波器显示出爱心波形?
  • JavaCV 之高斯滤波:图像降噪与细节保留的魔法
  • Nginx线程模型
  • js WebAPI黑马笔记(万字速通)
  • Java基础-JDBC
  • 教育机构如何利用知识中台进行数字教学
  • 【学习日常】导热方式计算,物体导热计算,小白方式计算导热量,导热胶的正确选择
  • 【C++之STL】一文学会使用 string
  • 【专属情侣空间】不懂技术,不懂代码,你也可以拥有专属的情侣空间了
  • 双指针算法篇——一快一慢须臾之间解决问题的飘逸与灵动(2)
  • triangle_area_calculators库发布
  • 进程信号——信号的保存
  • 聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测
  • 0.推荐序
  • 3.5 windows xp ReactOS EiAllocatePool()
  • [代码随想录打卡Day7] 454.四数相加II 383. 赎金信 15. 三数之和 18. 四数之和
  • GCC编译器的`-Wall`、`-Wextra`和`-pedantic`选项解读
  • Vue3-子传父
  • ORA-00020和ORA-00603报错处理
  • 【算法】递归+深搜:106.从中序与后序遍历序列构造二叉树(medium)
  • B2118 验证子串
  • Swift 开发教程系列 - 第5章:集合类型
  • oracle数据检查方法