当前位置: 首页 > news >正文

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

目录

    • 聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测
Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)
Transformer-LSTM:结合了 Transformer 和 LSTM 的模型,Transformer 主要处理序列中的全局依赖关系,而 LSTM 则更专注于序列中的局部依赖关系。这种组合可能在某些数据集上提供更好的性能。
Transformer:Transformer 是一种基于自注意力机制的模型,适用于处理序列数据。它在处理长距离依赖性和并行化方面表现出色。
CNN-LSTM:CNN-LSTM 结合了卷积神经网络 (CNN) 和长短期记忆网络 (LSTM),CNN 用于提取特征,LSTM 用于处理序列数据。
LSTM:长短期记忆网络是一种适用于处理序列数据的循环神经网络,能够捕捉长期依赖关系,常用于序列预测等任务。
CNN:卷积神经网络通常用于处理图像数据,但也可以在序列数据上表现良好,特别是在捕捉局部模式和特征方面具有优势。
1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!
2.Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)。
3.运行环境要求MATLAB版本为2023b及其以上。
4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测。
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501


http://www.mrgr.cn/news/66519.html

相关文章:

  • QT 5.13.0 + MSVC2017 + MYSQL8.0.11
  • 这个开源项目牛逼,集成了多款短信通道,让发送短信变的更简单!(带私活源码)
  • shodan6-7---清风
  • pandas——对齐运算+函数应用
  • 安科瑞Acrel-2000ES储能柜能量管理系统的详细介绍-安科瑞 蒋静
  • OpenCV图像基础
  • 0.推荐序
  • 3.5 windows xp ReactOS EiAllocatePool()
  • [代码随想录打卡Day7] 454.四数相加II 383. 赎金信 15. 三数之和 18. 四数之和
  • GCC编译器的`-Wall`、`-Wextra`和`-pedantic`选项解读
  • Vue3-子传父
  • ORA-00020和ORA-00603报错处理
  • 【算法】递归+深搜:106.从中序与后序遍历序列构造二叉树(medium)
  • B2118 验证子串
  • Swift 开发教程系列 - 第5章:集合类型
  • oracle数据检查方法
  • 多client向同一个pushgateway推送指标被覆盖问题
  • 解密抖音推荐算法:个性化内容背后的技术奥秘
  • 【MongoDB】MongoDB的聚合(Aggregate、Map Reduce)与管道(Pipline) 及索引详解(附详细案例)
  • 一篇文章速通Java开发Stream流(流水线开发附斗地主小游戏综合案例)
  • 一文快速预览经典深度学习模型(一)——CNN、RNN、LSTM、Transformer、ViT
  • Vue:计算属性
  • JavaScript 变量作用域与函数调用机制:var 示例详解
  • SEO
  • 一个最简单的网络编程
  • OpenID Connect 和 OAuth 2.0 有什么不同?