当前位置: 首页 > news >正文

【高等数学】3-2多元函数积分学

1. 二重积分

可以想象你有一块不规则的平面薄板,它在一个平面区域D上。二重积分$\iint_{D}f(x,y)d\sigma $就是用来求这个薄板的质量(假设薄板的面密度函数是$f(x,y)$)。

把区域D划分成许多非常小的小方块d\sigma(类似于把一块地划分成很多小格子),在每个小方块上,密度近似看成是一个常数$f(x,y)$,然后把每个小方块的质量$f(x,y)d\sigma $加起来,就是整个薄板的质量。

1.1. 直角坐标系计算二重积分

步骤

1. 画出积分区域D的图形

2. 根据图形选择坐标系

3. 根据切片法选择积分顺序

4. 确定两个积分元素的上下限

5. 列式计算

例题

$\iint\limits_{D} (3x+ 2y)d\sigma$,其中D是由两坐标轴及直线$x+y=2$所围成的闭区域。

1. 画出积分区域D的图形

2. 根据图形选择坐标系

直角坐标系大多数情况
极坐标系D的图形跟圆相关
(如圆、扇形、圆环、椭圆)

3. 根据切片法选择积分顺序

 二重积分可以转化为两次定积分来计算,但是xy先积谁是有顺序的。

在直角坐标系下有两种情况:

x型:垂直于x轴切片,先积y再积x

积谁,就是把谁当变量,想象有一个垂直于x轴的薄片在x轴方向上运动。

x型就是先对薄片积分(有一条线在薄片上沿y轴运动,把这些线加起来,形成薄片;再把薄片加起来,也就是对x积分。

当薄片对应的两条分界线(x+y=2;y=0)都不是分段函数时,可以用x

y型:垂直于y轴切片,先积x再积y

当薄片对应的两条分界线(x+y=2;x=0)都不是分段函数时,可以用y

4. 确定两个积分元素的上下限

假如用x型:x:0\rightarrow 2y:0\rightarrow 2-x

5. 列式计算

$\int_0^2\left[\int_0^{2-x}(3x+2y)\mathrm{d}y\right]\mathrm{d}x$              $\int_0^2dx\int_0^{2-x}(3x+2y)dy$     

先积右边的积分,再积左边的积分

\begin{aligned} &\int_0^2\mathrm{d}x\int_0^{2-x}(3x+2y)\mathrm{d}y \\ &=\int_0^2\left[3xy+y^2\right]_0^{2-x}\mathrm{d}x \\ &=\int_0^2\left[3x(2-x)+(2-x)^2\right]-\left[3x\cdot0+0^2\right]\mathrm{d}x \\ &=\int_0^2\left(-2x^2+2x+4\right)\mathrm{d}x \\ &=\frac{20}{3}\\ \end{aligned}

1.2. 极坐标系计算二重积分

步骤

1. 画出积分区域的图形

2. 根据图形选择坐标系

3. 根据切片法选择积分顺序

4. 确定两个积分元素的上下限

5. 列式计算

例题1

计算二重积分$I=\iint\limits_{D}\left(x^2+y^2\right)\mathrm{d}\sigma$的值,其中D是由x^2+y^2=4, x=0, 及y=x, 所围成的第一象限内的封闭区域。

1. 画出积分区域的图形

2. 根据图形选择坐标系

$I=\iint\limits_{D}\left(\rho^2cos^2\theta+\rho^2sin^2\theta\right)\mathrm{d}\theta\rho\mathrm{d}\rho=\iint\limits_D\rho^2\mathrm{d}\theta\rho\mathrm{d}\rho $

3. 根据切片法选择积分顺序

4. 确定两个积分元素的上下限

$\rho :0\rightarrow 2;\theta :\frac{\pi }{4}\rightarrow \frac{\pi }{2}$

5. 列式计算

\begin{aligned} I& =\iint\limits_{D}\left(x^{2}+y^{2}\right)\mathrm{d}\sigma=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{2}\rho^{2}\cdot\rho\mathrm{d}\rho \\ &=\int_{\frac\pi4}^{\frac\pi2}\left[\frac14\rho^4\right]_0^2\mathrm{d}\theta \\ &=\int_\frac\pi4^\frac\pi24\mathrm{d}\theta \\ &=\left[4\theta\right]_{\frac\pi4}^{\frac\pi2} \\ &=\pi \end{aligned}

例题2

求二重积分$\iint\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y$,其中D为圆形闭区域,x^2+y^2-4x=0围成的区域。

1. 画出积分区域的图形

2. 根据图形选择坐标系

3. 根据切片法选择积分顺序

4. 确定两个积分元素的上下限

\begin{aligned} &x^{2}+y^{2}-4x=0\\&\rho^{2}cos^{2}\theta+\rho^{2}sin^{2}\theta-4\rho cos\theta=0\\ &\rho^{2}-4\rho cos\theta=0\\ &\rho=4cos\theta\\ &\rho:0 \to 4cos\theta\\ &\theta :-\frac{\pi }{2}\rightarrow \frac{\pi }{2}\\ \end{aligned}

5. 列式计算

\begin{aligned}&\iint_{D}\sqrt{x^{2}+y^{2}}\mathrm{d}x\mathrm{d}y=\iint_{D}\rho\mathrm{d}\theta\rho\mathrm{d}\rho=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{4cos\theta}\rho^{2}\mathrm{d}\rho\\&=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[\frac{1}{3}\rho^{3}\right]_{0}^{4cos\theta}\mathrm{d}\theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{64}{3}cos^{3}\theta\mathrm{d}\theta\\ &=\frac{64}3\int_{-\frac\pi2}^{\frac\pi2}cos^2\theta\mathrm{d}\left(sin\theta\right)=\frac{64}{3}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(1-\sin^{2}\theta\right)\mathrm{d}\left(\sin\theta\right) \\ &=\frac{64}3\left[sin\theta-\frac13sin^3\theta\right]_{-\frac\pi2}^{\frac\pi2} =\frac{64}3\left[\left(\frac23\right)-\left(-\frac23\right)\right] =\frac{256}{9} \end{aligned}

1.3. 交换积分次序

1.3.1. 直接考察

1.3.2. 交换后更好算

1.4. 积分区域对称

2. 三重积分

如果说二重积分是求平面薄板的质量,那么三重积分$\iiint_\Omega f(x,y,z)dV$就是求一个空间物体的质量(假设物体的体密度函数是$f(x,y,z)$)。

把空间区域$\Omega$划分成许多非常小的小立方体$dV$(就像把一个大的立体空间划分成很多小积木块),在每个小立方体上,密度近似看成是一个常数$f(x,y,z)$,然后把每个小立方体的质量$f(x,y,z)dV$加起来,就是整个物体的质量。

3. 第一类曲线积分(对弧长的曲线积分)(无方向)

把一根弯曲的铁丝看成曲线$L$,它的线密度函数是$f(x,y)$(如果是三维曲线就是$f(x,y,z)$ )。第一类曲线积分$\int\limits_Lf(x,y)ds$就是求这根铁丝的质量。

我们把曲线$L$划分成很多小段$ds$(就像把铁丝分成很多小短节),在每一小段上,密度近似看成是一个常数$f(x,y)$,然后把每一小段的质量$f(x,y)ds$加起来,就是整个铁丝的质量。

3.1. 基本计算

核心思想

转化为定积分;参数下限小于上限

步骤

1. 确定参数并代入

2. 求导并替换ds


http://www.mrgr.cn/news/64398.html

相关文章:

  • PD取电快充协议芯片,XSP08Q在灯具中的应用
  • 性能小钢炮,核显玩3A,最值得买的 8745HS 迷你主机『零刻SER8』,2099的价格是真的香
  • 从单一到多元:揭秘 Hexo Diversity 主题的运行原理
  • 从零学习大模型(十)-----剪枝基本概念
  • 2025生物发酵展(济南)为生物制造产业注入新活力共谱行业新篇章
  • Android Studio插件版本与Gradle 版本对应关系
  • 计算机网络——TCP拥塞控制原理
  • 基于BP神经网络的手写体数字图像识别
  • 图文深入介绍Oracle DB link(三)
  • 【传知代码】用于图像识别的判别图正则化技术
  • nginx上传文件超过限制大小、响应超时、反向代理请求超时等问题解决
  • [HNCTF 2022 Week1]calc_jail_beginner_level3(JAIL)
  • 产品定义和独开分类
  • 形式化假说非决定论不确定性
  • Waymo的EMMA给多模态端到端自驾指引了方向
  • 软考:大数据架构设计
  • 【AI日记】24.11.02 LangChain Chat with Your Data
  • STM32F1学习——TIM
  • 【数模国奖】数模国赛获奖名单已出!附2024国赛二十三大赛区成绩公布通知!
  • 共模噪声和差模噪声
  • 【C#】Dictionary底层实现
  • STM32F103的CAN通讯接收测试
  • P3-1.【结构化程序设计】第一节——知识要点:算法、顺序结构程序设计、if语句的语法结构及各种用法
  • 带你了解 Spring Cloud Config
  • [进阶]集合的进阶(1)泛型
  • python NLTK快速入门