当前位置: 首页 > news >正文

street gaussion 耗时分析

目录

render 函数耗时

耗时函数 300ms


render 函数耗时

    def render(self, viewpoint_camera: Camera,pc: StreetGaussianModel,convert_SHs_python = None, compute_cov3D_python = None, scaling_modifier = None, override_color = None,exclude_list = [],):   include_list = list(set(pc.model_name_id.keys()) - set(exclude_list))start_time=time.time()# Step1: render foregroundpc.set_visibility(include_list)pc.parse_camera(viewpoint_camera)print('time11-------',time.time()-start_time)    result = self.render_kernel(viewpoint_camera, pc, convert_SHs_python, compute_cov3D_python, scaling_modifier, override_color)print('time12-------',time.time()-start_time) # Step2: render skyif pc.include_sky:sky_color = pc.sky_cubemap(viewpoint_camera, result['acc'].detach())result['rgb'] = result['rgb'] + sky_color * (1 - result['acc'])print('time13-------',time.time()-start_time) if pc.use_color_correction:result['rgb'] = pc.color_correction(viewpoint_camera, result['rgb'])print('time14-------',time.time()-start_time) if cfg.mode != 'train':result['rgb'] = torch.clamp(result['rgb'], 0., 1.)print('time15-------',time.time()-start_time) return result

time11------- 0.37116456031799316
time12------- 0.4089925289154053
time13------- 0.4396076202392578
time14------- 0.4396934509277344
time15------- 0.4397237300872803

耗时函数 300ms

parse_camera

def parse_camera(self, camera: Camera):# set cameraself.viewpoint_camera = camera# set background maskself.background.set_background_mask(camera)self.frame = camera.meta['frame']self.frame_idx = camera.meta['frame_idx']self.frame_is_val = camera.meta['is_val']self.num_gaussians = 0# background        if self.get_visibility('background'):num_gaussians_bkgd = self.background.get_xyz.shape[0]self.num_gaussians += num_gaussians_bkgd# object (build scene graph)self.graph_obj_list = []if self.include_obj:timestamp = camera.meta['timestamp']for i, obj_name in enumerate(self.obj_list):obj_model: GaussianModelActor = getattr(self, obj_name)start_timestamp, end_timestamp = obj_model.start_timestamp, obj_model.end_timestampif timestamp >= start_timestamp and timestamp <= end_timestamp and self.get_visibility(obj_name):self.graph_obj_list.append(obj_name)num_gaussians_obj = getattr(self, obj_name).get_xyz.shape[0]self.num_gaussians += num_gaussians_obj# set index rangeself.graph_gaussian_range = dict()idx = 0if self.get_visibility('background'):num_gaussians_bkgd = self.background.get_xyz.shape[0]self.graph_gaussian_range['background'] = [idx, idx+num_gaussians_bkgd-1]idx += num_gaussians_bkgdfor obj_name in self.graph_obj_list:num_gaussians_obj = getattr(self, obj_name).get_xyz.shape[0]self.graph_gaussian_range[obj_name] = [idx, idx+num_gaussians_obj-1]idx += num_gaussians_objif len(self.graph_obj_list) > 0:self.obj_rots = []self.obj_trans = []for i, obj_name in enumerate(self.graph_obj_list):obj_model: GaussianModelActor = getattr(self, obj_name)track_id = obj_model.track_idobj_rot = self.actor_pose.get_tracking_rotation(track_id, self.viewpoint_camera)obj_trans = self.actor_pose.get_tracking_translation(track_id, self.viewpoint_camera)                ego_pose = self.viewpoint_camera.ego_poseego_pose_rot = matrix_to_quaternion(ego_pose[:3, :3].unsqueeze(0)).squeeze(0)obj_rot = quaternion_raw_multiply(ego_pose_rot.unsqueeze(0), obj_rot.unsqueeze(0)).squeeze(0)obj_trans = ego_pose[:3, :3] @ obj_trans + ego_pose[:3, 3]obj_rot = obj_rot.expand(obj_model.get_xyz.shape[0], -1)obj_trans = obj_trans.unsqueeze(0).expand(obj_model.get_xyz.shape[0], -1)self.obj_rots.append(obj_rot)self.obj_trans.append(obj_trans)self.obj_rots = torch.cat(self.obj_rots, dim=0)self.obj_trans = torch.cat(self.obj_trans, dim=0)  self.flip_mask = []for obj_name in self.graph_obj_list:obj_model: GaussianModelActor = getattr(self, obj_name)if obj_model.deformable or self.flip_prob == 0:flip_mask = torch.zeros_like(obj_model.get_xyz[:, 0]).bool()else:flip_mask = torch.rand_like(obj_model.get_xyz[:, 0]) < self.flip_probself.flip_mask.append(flip_mask)self.flip_mask = torch.cat(self.flip_mask, dim=0)   


http://www.mrgr.cn/news/62988.html

相关文章:

  • 计算机网络(五)——传输层
  • JAVA多线程学习
  • 面试:C++类成员初始化顺序
  • 远程桌面软件比如说向日葵他们的原理是什么
  • 6.business english--updates
  • JVM之垃圾回收器概述(续)的详细解析
  • 数据结构作业day4
  • pyecharts地图类型
  • 暴力破解漏洞
  • node.js_npm : 无法加载文件 D:\Program Files\nodejs\npm.ps1
  • [java][高级]FilterListenerAjax
  • 双瑞股份上会,业绩增速放缓,与部分供应商交易合理性不足
  • 使用 MMDetection 实现 Pascal VOC 数据集的目标检测项目练习(四) annaconda和pytorch
  • Unity DOTS
  • 防爆电机技术要点、选型,一文搞定!
  • 必应Bing国内搜索广告代理商,必应广告如何开户投放?
  • STM32--STM32 微控制器详解
  • 基于Java的茶产品销售平台系统【附源码】
  • 假设检验简介
  • 组织如何防御日益增加的 API 攻击面
  • SpringBoot应用部署到Docker中MySQL8时间戳相差8小时问题及处理方式
  • 网络通信与并发编程(七)GIL、协程
  • 《揭秘 C++:确保模板函数重载决议正确的秘籍》
  • Redis ——发布订阅
  • Android 中View.post的用法
  • C++缺陷识别于调试