当前位置: 首页 > news >正文

【Java】方法的使用

方法的使用

  • 1. 方法概念及使用
    • 1.1 什么是方法(method)
    • 1.2 方法定义
    • 1.3 方法调用的执行过程
    • 1.4 实参和形参的关系(重要)
    • 1.5 没有返回值的方法
  • 2. 方法重载
    • 2.1 为什么需要方法重载
    • 2.2 方法重载概念
    • 2.3 方法签名
  • 3. 递归
    • 3.1 生活中的故事
    • 3.2 递归的概念
    • 3.2 递归执行过程分析
    • 3.3 递归练习

【本节目标】

  1. 掌握方法的定义以及使用
  2. 掌握方法传参
  3. 掌握方法重载
  4. 掌握递归

1. 方法概念及使用

在编程中,某段功能的代码可能频繁使用到,如果在每个位置都重新实现一遍,会:

  1. 使程序变得繁琐
  2. 开发效率低下,做了大量重复性的工作
  3. 不利于维护,需要改动时,所有用到该段代码的位置都需要修改
  4. 不利于复用

因此,在编程中,我们也可以将频繁使用的代码封装成"方法",需要时直接拿来方法名–方法的入口地址使用即可,避免了一遍一遍的累赘。

1.1 什么是方法(method)

方法就是一个代码片段. 类似于 C 语言中的 “函数”。方法存在的意义(不要背, 重在体会):

  1. 是能够模块化的组织代码(当代码规模比较复杂的时候).
  2. 做到代码被重复使用, 一份代码可以在多个位置使用.
  3. 让代码更好理解更简单.
  4. 直接调用现有方法开发, 不必重复造轮子.
    比如:现在要开发一款日历,在日历中经常要判断一个年份是否为闰年,则有如下代码:
int year = 1900;
if((0 == year % 4 && 0 != year % 100) || 0 == year % 400){System.out.println(year+"年是闰年");
}else{System.out.println(year+"年不是闰年");
}

那方法该如何来定义呢?

1.2 方法定义

方法语法格式

// 方法定义
修饰符 返回值类型 方法名称([参数类型 形参 ...]){方法体代码;[return 返回值];
}

示例一:实现一个函数,检测一个年份是否为闰年

public class Method{// 方法定义public static boolean isLeapYear(int year){if((0 == year % 4 && 0 != year % 100) || 0 == year % 400){return true;}else{return false;}}
}

示例二: 实现一个两个整数相加的方法

public class Method{// 方法的定义public static int add(int x, int y) {return x + y;}
}

【注意事项】

  1. 修饰符:现阶段直接使用public static 固定搭配
  2. 返回值类型:如果方法有返回值,返回值类型必须要与返回的实体类型一致,如果没有返回值,必须写成void
  3. 方法名字:采用小驼峰命名(如果只有一个单词都小写,若2个单词以上 首字母小写,其他的单词首字母大写,如isLeapYear)
  4. 参数列表:如果方法没有参数,()中什么都不写,如果有参数,需指定参数类型,多个参数之间使用逗号隔开
  5. 方法体:方法内部要执行的语句
  6. 在java当中,方法必须写在类当中
  7. 在java当中,方法不能嵌套定义
  8. 在java当中,没有方法声明一说

1.3 方法调用的执行过程

【方法调用过程】
调用方法—>传递参数—>找到方法地址—>执行被调方法的方法体—>被调方法结束返回—>回到主调方法继续往下执行
在这里插入图片描述
【注意事项】
定义方法的时候, 不会执行方法的代码. 只有调用的时候才会执行.
一个方法可以被多次调用.
代码示例1 计算两个整数相加

public class Method {public static void main(String[] args) {int a = 10;int b = 20;System.out.println("第一次调用方法之前");int ret = add(a, b);System.out.println("第一次调用方法之后");System.out.println("ret = " + ret);System.out.println("第二次调用方法之前");ret = add(30, 50);System.out.println("第二次调用方法之后");System.out.println("ret = " + ret);}public static int add(int x, int y) {System.out.println("调用方法中 x = " + x + " y = " + y);return x + y;}
}
// 执行结果
一次调用方法之前
调用方法中 x = 10 y = 20
第一次调用方法之后
ret = 30
第二次调用方法之前
调用方法中 x = 30 y = 50
第二次调用方法之后
ret = 80

代码示例: 计算 1! + 2! + 3! + 4! + 5!

public class TestMethod {public static void main(String[] args) {int sum = 0;for (int i = 1; i <= 5; i++) {sum += fac(i);}System.out.println("sum = " + sum);}public static int fac(int n) {System.out.println("计算 n 的阶乘中n! = " + n);int result = 1;for (int i = 1; i <= n; i++) {result *= i;}return result;}
}
// 执行结果
计算 n 的阶乘中 n! = 1
计算 n 的阶乘中 n! = 2
计算 n 的阶乘中 n! = 3
计算 n 的阶乘中 n! = 4
计算 n 的阶乘中 n! = 5
sum = 153

使用方法, 避免使用二重循环, 让代码更简单清晰.

1.4 实参和形参的关系(重要)

方法的形参相当于数学函数中的自变量,比如:1 + 2 + 3 + … + n的公式为sum(n) = (1+n)*n/2
Java中方法的形参就相当于sum函数中的自变量n,用来接收sum函数在调用时传递的值的。形参的名字可以随意取,对方法都没有任何影响,形参只是方法在定义时需要借助的一个变量,用来保存方法在调用时传递过来的值

public static int getSum(int N){ // N是形参
return (1+N)*N / 2;
}
getSum(10); // 10是实参,在方法调用时,形参N用来保存10
getSum(100); // 100是实参,在方法调用时,形参N用来保存100

再比如:

public static int add(int a, int b){
return a + b;
}
add(2, 3); // 2和3是实参,在调用时传给形参a和b

注意:在Java中,实参的值永远都是拷贝到形参中,形参和实参本质是两个实体
代码示例: 交换两个整型变量

public class TestMethod {public static void main(String[] args) {int a = 10;int b = 20;swap(a, b);System.out.println("main: a = " + a + " b = " + b);}public static void swap(int x, int y) {int tmp = x;x = y;y = tmp;System.out.println("swap: x = " + x + " y = " + y);}
}
// 运行结果
swap: x = 20 y = 10
main: a = 10 b = 20

可以看到,在swap函数交换之后,形参x和y的值发生了改变,但是main方法中a和b还是交换之前的值,即没有交换成功。
【原因分析】
实参a和b是main方法中的两个变量,其空间在main方法的栈(一块特殊的内存空间)中,而形参x和y是swap方法中的两个变量,x和y的空间在swap方法运行时的栈中,因此:实参a和b 与 形参x和y是两个没有任何关联性的变量,在swap方法调用时,只是将实参a和b中的值拷贝了一份传递给了形参x和y,因此对形参x和y操作不会对实参a和b产生任何影响。
注意:对于基础类型来说, 形参相当于实参的拷贝. 即 传值调用

int a = 10;
int b = 20;
int x = a;
int y = b;
int tmp = x;
x = y;
y = tmp;

在这里插入图片描述
可以看到, 对 x 和 y 的修改, 不影响 a 和 b.
【解决办法】: 传引用类型参数 (例如数组来解决这个问题)
这个代码的运行过程, 后面学习数组的时候再详细解释.

public class TestMethod {public static void main(String[] args) {int[] arr = {10, 20};swap(arr);System.out.println("arr[0] = " + arr[0] + " arr[1] = " + arr[1]);}public static void swap(int[] arr) {int tmp = arr[0];arr[0] = arr[1];arr[1] = tmp;}
}
// 运行结果
arr[0] = 20 arr[1] = 10

1.5 没有返回值的方法

方法的返回值是可选的. 有些时候可以没有的,没有时返回值类型必须写成void
代码示例

class Test {public static void main(String[] args) {int a = 10;int b = 20;print(a, b);}public static void print(int x, int y) {System.out.println("x = " + x + " y = " + y);}
}

另外, 如刚才的交换两个整数的方法, 就是没有返回值的.

2. 方法重载

2.1 为什么需要方法重载

public class TestMethod {public static void main(String[] args) {int a = 10;int b = 20;int ret = add(a, b);System.out.println("ret = " + ret);double a2 = 10.5;double b2 = 20.5;double ret2 = add(a2, b2);System.out.println("ret2 = " + ret2);}public static int add(int x, int y) {return x + y;}
}
// 编译出错
Test.java:13: 错误: 不兼容的类型:double转换到int可能会有损失
double ret2 = add(a2, b2);^

由于参数类型不匹配, 所以不能直接使用现有的 add 方法.
一种比较简单粗暴的解决方法如下:

public class TestMethod {public static void main(String[] args) {int a = 10;int b = 20;int ret = addInt(a, b);System.out.println("ret = " + ret);double a2 = 10.5;double b2 = 20.5;double ret2 = addDouble(a2, b2);System.out.println("ret2 = " + ret2);}public static int addInt(int x, int y) {return x + y;}public static double addDouble(double x, double y) {return x + y;}
}

上述代码确实可以解决问题,但不友好的地方是:需要提供许多不同的方法名,而取名字本来就是让人头疼的事情。那能否将所有的名字都给成 add 呢?

2.2 方法重载概念

在自然语言中,经常会出现“一词多义”的现象,比如:“好人”。
在自然语言中,一个词语如果有多重含义,那么就说该词语被重载了,具体代表什么含义需要结合具体的场景。
在Java中方法也是可以重载的。
在Java中,如果多个方法的名字相同,参数列表不同,则称该几种方法被重载了

public class TestMethod {public static void main(String[] args) {add(1, 2); // 调用add(int, int)add(1.5, 2.5); // 调用add(double, double)add(1.5, 2.5, 3.5); // 调用add(double, double, double)}public static int add(int x, int y) {return x + y;}public static double add(double x, double y) {return x + y;}public static double add(double x, double y, double z) {return x + y + z;}
}

注意:

  1. 方法名必须相同
  2. 参数列表必须不同(参数的个数不同、参数的类型不同、类型的次序必须不同)
  3. 与返回值类型是否相同无关
// 注意:两个方法如果仅仅只是因为返回值类型不同,是不能构成重载的
public class TestMethod {public static void main(String[] args) {int a = 10;int b = 20;int ret = add(a, b);System.out.println("ret = " + ret);}public static int add(int x, int y) {return x + y;}public static double add(int x, int y) {return x + y;}
}
// 编译出错
Test.java:13: 错误: 已在类 Test中定义了方法 add(int,int)
public static double add(int x, int y) {^
1 个错误
  1. 编译器在编译代码时,会对实参类型进行推演,根据推演的结果来确定调用哪个方法

2.3 方法签名

在同一个作用域中不能定义两个相同名称的标识符。比如:方法中不能定义两个名字一样的变量,那为什么类中就可以定义方法名相同的方法呢?
方法签名即:经过编译器编译修改过之后方法最终的名字。具体方式:方法全路径名+参数列表+返回值类型,构成方法完整的名字

public class TestMethod {public static int add(int x, int y){return x + y;}public static double add(double x, double y){return x + y;}public static void main(String[] args) {add(1,2);add(1.5, 2.5);}
}

上述代码经过编译之后,然后使用JDK自带的javap反汇编工具查看,具体操作:

  1. 先对工程进行编译生成.class字节码文件
  2. 在控制台中进入到要查看的.class所在的目录
  3. 输入:javap -v 字节码文件名字即可
    在这里插入图片描述
    方法签名中的一些特殊符号说明:
    在这里插入图片描述

3. 递归

3.1 生活中的故事

从前有坐山,山上有座庙,庙里有个老和尚给小和尚将故事,讲的就是:
"从前有座山,山上有座庙,庙里有个老和尚给小和尚讲故事,讲的就是:
“从前有座山,山上有座庙…”
“从前有座山……”
上面的两个故事有个共同的特征:自身中又包含了自己,该种思想在数学和编程中非常有用,因为有些时候,我们遇到的问题直接并不好解决,但是发现将原问题拆分成其子问题之后,子问题与原问题有相同的解法,等子问题解决之后,原问题就迎刃而解了

3.2 递归的概念

一个方法在执行过程中调用自身, 就称为 “递归”.
递归相当于数学上的 “数学归纳法”, 有一个起始条件, 然后有一个递推公式.

例如, 我们求 N!
起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.
递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!

递归的必要条件:

  1. 将原问题划分成其子问题,注意:子问题必须要与原问题的解法相同
  2. 递归出口
    代码示例: 递归求 N 的阶乘
public static void main(String[] args) {int n = 5;int ret = factor(n);System.out.println("ret = " + ret);
}
public static int factor(int n) {if (n == 1) {return 1;}return n * factor(n - 1); // factor 调用函数自身
}
// 执行结果
ret = 120

3.2 递归执行过程分析

递归的程序的执行过程不太容易理解, 要想理解清楚递归, 必须先理解清楚 “方法的执行过程”, 尤其是 “方法执行结束之后, 回到调用位置继续往下执行”.
代码示例: 递归求 N 的阶乘

public static void main(String[] args) {int n = 5;int ret = factor(n);System.out.println("ret = " + ret);
}
public static int factor(int n) {System.out.println("函数开始, n = " + n);if (n == 1) {System.out.println("函数结束, n = 1 ret = 1");return 1;}int ret = n * factor(n - 1);System.out.println("函数结束, n = " + n + " ret = " + ret);return ret;
}
// 执行结果
函数开始, n = 5
函数开始, n = 4
函数开始, n = 3
函数开始, n = 2
函数开始, n = 1
函数结束, n = 1 ret = 1
函数结束, n = 2 ret = 2
函数结束, n = 3 ret = 6
函数结束, n = 4 ret = 24
函数结束, n = 5 ret = 120
ret = 120

执行过程图
在这里插入图片描述
程序按照序号中标识的 (1) -> (8) 的顺序执行.

关于 “调用栈”
方法调用的时候, 会有一个 “栈” 这样的内存空间描述当前的调用关系. 称为调用栈.
每一次的方法调用就称为一个 “栈帧”, 每个栈帧中包含了这次调用的参数是哪些, 返回到哪里继续执行等信息.
后面我们借助 IDEA 很容易看到调用栈的内容.

3.3 递归练习

代码示例1 按顺序打印一个数字的每一位(例如 1234 打印出 1 2 3 4)

public static void print(int n) {if (n > 9) {print(n / 10);}System.out.println(n % 10);
}

代码示例2 递归求 1 + 2 + 3 + … + 10

public static int sum(int n) {if (n == 1) {return 1;}return n + sum(n - 1);
}

代码示例3 写一个递归方法,输入一个非负整数,返回组成它的数字之和.
例如,输入 1729, 则应该返回1+7+2+9,它的和是19

public static int sum(int n) {if (n < 10) {return n;}return n % 10 + sum(n / 10);
}

代码示例4 求斐波那契数列的第 N 项
斐波那契数列介绍

public static int fib(int n) {if(n == 1) {return 0;}if (n == 2) {return 1;}return fib(n - 1) + fib(n - 2);
}

当我们求 fib(40) 的时候发现, 程序执行速度极慢. 原因是进行了大量的重复运算
面试时斐波那契数列不要用递归

class Test {public static int count = 0; // 这个是类的成员变量. 后面会详细介绍到public static void main(String[] args) {System.out.println(fib(40));System.out.println(count);}public static int fib(int n) {if(n == 1) {return 0;}if (n == 2) {return 1;}if (n == 3) {count++;}return fib(n - 1) + fib(n - 2);}
}
// 执行结果
102334155
39088169 // fib(3) 重复执行了 3 千万次

可以使用循环(迭代)的方式来求斐波那契数列问题, 避免出现冗余运算

public static int fib(int n) {if(n == 1) {return 0;}if (n == 2) {return 1;}int f1 = 0;int f2 = 1;int f3 = -1;for (int i = 3; i <= n; i++) {f3 = f1 + f2;f1 = f2;f2 = f3;}return f3;
}

此时程序的执行效率大大提高了.


http://www.mrgr.cn/news/61026.html

相关文章:

  • 人工智能和大数据如何改变企业?
  • 工商银行实时汇率查询接口-外汇实时汇率API-外汇实时汇率
  • Consul微服务配置中心部署(在线安装)
  • 软件开发中的任务细化:识别和解决常见的5大问题
  • 离线挂载yum源
  • React 前端面试全攻略:基础概念、组件、Hooks 等热门考点详解
  • 派生类的构造过程
  • 学习私服并配置到项目中
  • DevOps赋能:优化业务价值流的实战策略与路径(上)
  • RECE-nfs共享文件
  • 安信金业:18k和24k黄金的区别
  • MySQL数据库中的CURRENT_TIMESTAMP函数使用经验小结
  • 【亚马逊云科技】Amazon Bedrock搭建AI服务
  • 磁盘空间不足导致postgreSQL启动失败
  • flutter VideoPlayer适配:保持视频的原始宽高比,缩放视频使它完全覆盖父容器
  • 鸿蒙应用开发实战-常用组件-图片组件
  • .NET Core WebApi第7讲:项目的发布与部署
  • SpringBoot框架在商场应急管理中的实践
  • CRM客户关系管理系统:全方位功能模块助力企业高效运营与增长
  • 从理解路由到实现一套Router(路由)