当前位置: 首页 > news >正文

指数运算和幂运算

指数运算和幂运算

  • 1. Exponentiation (指数运算和幂运算)
  • 2. Exponent rules (指数定律)
  • 3. Particular bases (特殊底数的幂)
  • 4. Integer exponents (整数指数的幂)
  • References

1. Exponentiation (指数运算和幂运算)

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as b n b^n bn, where b b b is the base and n n n is the power; this is pronounced as “ b b b (raised) to the (power of) n n n”.
在数学中,重复连乘的运算叫做乘方,乘方的结果称为。在 b n b^n bn 中,底数为 b b b,指数为 n n n

When n n n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n b^n bn is the product of multiplying n n n bases.
n n n 为正整数, n n n 个相同的数 b b b 连续相乘 (即 b b b 自乘 n n n 次),就可将 b n b^n bn 看作乘方的结果
b n = b × b × ⋯ × b × b ⏟ n times b^n = \underbrace{b \times b \times \dots \times b \times b}_{n \text{ times}} bn=n times b×b××b×b

In particular, b 1 = b b^1=b b1=b.
当指数为 1 时,通常不写出来,因为运算出的值和底数的数值一样。

The expression b 2 = b ∗ b b^{2} = b * b b2=bb is called “the square of b b b” or “ b b b squared”, because the area of a square with side-length b b b is b 2 b^2 b2.
指数为 2 时,可以读作 b b b 的平方。

the expression b 3 = b ∗ b ∗ b b^{3} = b * b * b b3=bbb is called “the cube of b b b” or “ b b b cubed”, because the volume of a cube with side-length b b b is b 3 b^3 b3.
指数为 3 时,可以读作 b b b 的立方。

mathematics /ˌmæθəˈmætɪks/:n. 数学,计算,运算
exponentiation /ˌekspoʊˌnenʃɪ'eɪʃən/:n. 指数运算,幂运算
exponent /ɪkˈspəʊnənt/:n. 指数,幂,(观点、理论的) 拥护者,鼓吹者,倡导者,(某种活动的) 能手,大师 adj. 讲解的
power /ˈpaʊə(r)/:n. 权力,能力,操纵力,职权,政权,体力,强国,实力,影响力,动力,能量,电力供应,幂,放大率,势力 v. 驱动,快速前进 adj. 电动的

The exponent is usually shown as a superscript to the right of the base as b n b^n bn or in computer code as b^n. In that case, b n b^n bn is called “ b b b raised to the n n nth power”, “ b b b to the power of n n n”, “the n n nth power of b b b”, or most briefly as “ b b b to the n n n”.
幂运算 (exponentiation) 又称指数运算,表达式为 b n b^n bn,读作 b b b n n n 次方或 b b b n n n 次幂。其中 b b b 称为底数,而 n n n 称为指数,通常指数写成上标,放在底数的右边。 b n b^{n} bn 通常写成 b^nb**n

The above definition of b n b^{n} bn immediately implies several properties, in particular the multiplication rule:

b n × b m = b × ⋯ × b ⏟ n times × b × ⋯ × b ⏟ m times = b × ⋯ × b ⏟ n + m times = b n + m b^n \times b^m = \underbrace{b \times \dots \times b}_{n \text{ times}} \times \underbrace{b \times \dots \times b}_{m \text{ times}} = \underbrace{b \times \dots \times b}_{n+m \text{ times}} = b^{n+m} bn×bm=n times b××b×m times b××b=n+m times b××b=bn+m

That is, when multiplying a base raised to one power times the same base raised to another power, the powers add.

Extending this rule to the power zero gives b 0 × b n = b 0 + n = b n b^0 \times b^n = b^{0+n} = b^n b0×bn=b0+n=bn, and dividing both sides by b n b^n bn gives b 0 = b n / b n = 1 b^0 = b^n / b^n = 1 b0=bn/bn=1. That is, the multiplication rule implies the definition b 0 = 1 b^0=1 b0=1.
指数是 0 时,底数不为 0,幂均为 1 (即除 0 外,所有数的 0 次方都是 1):
b 0 = 1 ( b ≠ 0 ) b^{0} = 1 \quad (b \ne 0) b0=1(b=0)
00 次方 ( 0 0 0^{0} 00) 目前数学家没有给予正式的定义,在部分数学领域中,常用的惯例是定义为 1

A similar argument implies the definition for negative integer powers: b − n = 1 / b n b^{-n} = 1/b^n bn=1/bn.
指数是负数时,就等于重复除以底数 (或底数的倒数自乘指数这么多次):
b − n = 1 b × ⋯ × b ⏟ n = 1 b n = ( 1 b ) n ( b ≠ 0 ) b^{-n} = {1 \over \underbrace{b\times\cdots\times b}_n} = \frac{1}{b^n} = \left(\frac{1}{b}\right)^{n} \quad (b \ne 0) bn=n b××b1=bn1=(b1)n(b=0)

That is, extending the multiplication rule gives b − n × b n = b − n + n = b 0 = 1 b^{-n} \times b^n = b^{-n+n} = b^0 = 1 bn×bn=bn+n=b0=1. Dividing both sides by b n b^n bn gives b − n = 1 / b n b^{-n} = 1 / b^n bn=1/bn. This also implies the definition for fractional powers: b n / m = b n m b^{n/m} = \sqrt[m]{b^n} bn/m=mbn .
若以分数为指数的幂,则定义 b n m = b n m b^{\frac{n}{m}} = \sqrt[m]{b^{n}} bmn=mbn ,即 b b b n n n 次方再开 m m m 次方根。

For example, b 1 / 2 × b 1 / 2 = b 1 / 2 + 1 / 2 = b 1 = b b^{1/2} \times b^{1/2} = b^{1/2 \,+\, 1/2} = b^1 = b b1/2×b1/2=b1/2+1/2=b1=b, meaning ( b 1 / 2 ) 2 = b (b^{1/2})^2 = b (b1/2)2=b, which is the definition of square root: b 1 / 2 = b b^{1/2} = \sqrt{b} b1/2=b .

2. Exponent rules (指数定律)

  • a m × a n = a m + n a^m \times a^n = a^{m + n} am×an=am+n

同底数幂相乘,底数不变,指数相加。

  • a m ÷ a n = a m − n a^m \div a^n = a^{m - n} am÷an=amn

同底数幂相除,底数不变,指数相减。

  • a n b n = ( a b ) n \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n bnan=(ba)n

同指数幂相除,指数不变,底数相除 ( b b b 不为 0)。

  • a n ⋅ b n = ( a ⋅ b ) n a^n \cdot b^n = (a \cdot b)^n anbn=(ab)n

  • ( a m ) n = a m ⋅ n \left(a^m\right)^n = a^{m \cdot n} (am)n=amn

  • x m n = x m n x^\frac{m}{n} = \sqrt[n]{x^m} xnm=nxm

  • x − m = 1 x m ( x ≠ 0 ) x^{-m} = \frac{1}{x^m} \quad (x \ne 0) xm=xm1(x=0)

  • x 0 = 1 ( x ≠ 0 ) x^0 = 1 \quad (x \ne 0) x0=1(x=0)

  • x 1 = x x^1 = x x1=x

  • x − 1 = 1 x ( x ≠ 0 ) x^{-1} = \frac{1}{x} \quad (x \ne 0) x1=x1(x=0)

3. Particular bases (特殊底数的幂)

  • Powers of ten (10 的幂)

In the base ten (decimal) number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example, 1 0 3 = 1000 10^{3} = 1000 103=1000, 1 0 − 3 = 0.001 10^{-3} = 0.001 103=0.001 and 1 0 − 4 = 0.0001 10^{-4} = 0.0001 104=0.0001.
在十进制的计数系统中,10 的幂写成 1 后面跟着很多个 0

  • Powers of two (2 的幂)

The first negative powers of 2 have special names: 2 − 1 2^{-1} 21 is a half; 2 − 2 2^{-2} 22 is a quarter.

  • Powers of one (1 的幂)

Every power of one equals: 1 n = 1 1^n = 1 1n=1.
1 的任何次幂都为 1

  • Powers of zero (0 的幂)

For a positive exponent n > 0 n > 0 n>0, the n n nth power of zero is zero: 0 n = 0 0^n = 0 0n=0. For a negative exponent, 0 − n = 1 / 0 n = 1 / 0 0^{-n}=1/0^n=1/0 0n=1/0n=1/0 is undefined.
0 的正数幂都等于 00 的负数幂没有定义。

The expression 0 0 0^0 00 is either defined as lim ⁡ x → 0 x x = 1 \lim\limits_{x\to 0} x^x = 1 x0limxx=1, or it is left undefined.
任何非 0 之数的 0 次方都是 1;而 00 次方是悬而未决的,某些领域下常用的惯例是约定为 1

  • Powers of negative one (负 1 的幂)

Since a negative number times another negative is positive, we have:
( − 1 ) n = { 1 for even  n , − 1 for odd  n . (-1)^n = \left\{\begin{array}{rl} 1 & \text{for even } n, \\ -1 & \text{for odd } n. \\ \end{array}\right. (1)n={11for even n,for odd n.

Because of this, powers of −1 are useful for expressing alternating sequences.
-1 的奇数幂等于 -1-1 的偶数幂等于 1

  • Large exponents (指数非常大时的幂)

The limit of a sequence of powers of a number greater than one diverges; in other words, the sequence grows without bound: b n → ∞ b^n \rightarrow \infty bn as n → ∞ n \rightarrow \infty n when b > 1 b > 1 b>1
This can be read as “ b b b to the power of n n n tends to + ∞ +\infty + as n n n tends to infinity when b b b is greater than one”.
一个大于 1 的数的幂趋于无穷大,一个小于 -1 的数的幂趋于负无穷大。
a > 1 a > 1 a>1 n → ∞ n \to \infty n a n → ∞ a^n \to \infty an
a < − 1 a < -1 a<1 n → ∞ n \to \infty n a n → − ∞ a^n \to -\infty an ∞ \infty (取决于 n n n 是奇数或偶数)

Powers of a number with absolute value less than one tend to zero: b n → 0 b^n \rightarrow 0 bn0 as n → ∞ n \rightarrow \infty n when ∣ b ∣ < 1 |b| < 1 b<1
一个绝对值小于 1 的数的幂趋于 0,当 ∣ a ∣ < 1 |a| < 1 a<1 n → ∞ n \to \infty n a n → 0 a^n \to 0 an0

Any power of one is always one: b n = 1 b^{n} = 1 bn=1 for all n n n for b = 1 b = 1 b=1
1 的幂永远都是 1,当 a = 1 a = 1 a=1 n → ∞ n \to \infty n a n → 1 a^n \to 1 an1

Powers of a negative number b ≤ − 1 b \leq -1 b1 alternate between positive and negative as n n n alternates between even and odd, and thus do not tend to any limit as n n n grows.
n → ∞ n \to \infty n, ( 1 + 1 n ) n → e \left(1+\frac{1}{n}\right)^n \to e (1+n1)ne

4. Integer exponents (整数指数的幂)

  • Positive exponents (正整数指数的幂)

The base case is b 1 = b b^1 = b b1=b and the recurrence is b n + 1 = b n ⋅ b b^{n+1} = b^n \cdot b bn+1=bnb.

The associativity of multiplication implies that for any positive integers m m m and n n n, b m + n = b m ⋅ b n b^{m+n} = b^m \cdot b^n bm+n=bmbn, and ( b m ) n = b m ⋅ n \left(b^m\right)^n = b^{m \cdot n} (bm)n=bmn.

  • Zero exponent (指数 0 的幂)

As mentioned earlier, a (nonzero) number raised to the 0 power is 1: b 0 = 1 b^0 = 1 b0=1.

  • Negative exponents (负数指数的幂)

Exponentiation with negative exponents is defined by the following identity, which holds for any integer n n n and nonzero b b b: b − n = 1 b n b^{-n} = \frac{1}{b^n} bn=bn1.
任何不为 0 的数 a-1 次方等于它的倒数 a − 1 = 1 a a^{-1} = \frac{1}{a} a1=a1

对于非零 a a a 定义 a − n = 1 a n a^{-n} = \frac{1}{a^n} an=an1,而 a = 0 a = 0 a=0 时分母为 0 没有意义。

根据定义 a m ⋅ a n = a m + n a^m\cdot a^n = a^{m+n} aman=am+n,当 m = − n m = -n m=n a − n a n = a − n + n = a 0 = 1 a^{-n} \, a^{n} = a^{-n\,+\,n} = a^0 = 1 anan=an+n=a0=1,得 a − n a n = 1 a^{-n} \, a^{n} = 1 anan=1, 所以 a − n = 1 a n a^{-n} = \frac{1}{a^{n}} an=an1

通过运算法则 a m a n = a m − n \frac{a^m}{a^n} = a^{m - n} anam=amn,当 m = 0 m = 0 m=0 时,可得 a − n = a 0 − n = a 0 a n = 1 a n a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^{n}} an=a0n=ana0=an1

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] Exponentiation, https://en.wikipedia.org/wiki/Exponentiation
[3] Exponent rules, https://www.rapidtables.com/math/number/exponent.html
[4] Exponential function, https://en.wikipedia.org/wiki/Exponential_function


http://www.mrgr.cn/news/60011.html

相关文章:

  • 【SQLite】改善默认输出格式不直观难以阅读问题:通过修改输出设置提升数据可读性
  • spygalss cdc 检测的bug(二)
  • Java毕业设计项目-ssm图书管理系统
  • 网络编程_day3
  • R语言中常用功能汇总
  • QT仿QQ聊天项目,第一节,创建项目并布置编辑登录界面
  • redis详细教程(3.hash和set类型)
  • 计算机网络——有连接传输层协议TCP
  • java平方根计算 C语言指针变量
  • UICC运营商特权与eSIM配置文件冲突问题
  • 系统滴答定时器
  • 构成正方形的数量
  • 基于SSM+微信小程序的跑腿平台管理系统(跑腿3)
  • 进程间通信(管道)
  • 【已解决,含泪总结】非root权限在服务器上配置python和torch环境,代码最终成功训练(一)
  • Ubuntu22.04编译安装实时内核
  • 2-135 基于matlab的有限差分法计算电位分布
  • 1025. 除数博弈
  • maven之pom.xml文件解读
  • flink1.17.2安装和使用
  • 基于协同过滤算法的旅游网站推荐系统
  • iTerm2 保持SSH远程连接
  • PyQt入门指南二十九 QListView列表视图组件
  • leetcode day7 442
  • 揭秘:如何用Puppeteer和BrowserWS解锁网站性能的隐秘角落
  • 【CTF】 文件包含漏洞——data伪协议 【详】