当前位置: 首页 > news >正文

【LeetCode】动态规划—646. 最长数对链(附完整Python/C++代码)

动态规划—646. 最长数对链

  • 前言
  • 题目描述
  • 基本思路
    • 1. 问题定义
    • 2. 理解问题和递推关系
    • 3. 解决方法
      • 3.1 动态规划方法
      • 3.2 贪心方法
    • 4. 进一步优化
    • 5. 小总结
  • 代码实现
    • Python
      • Python3代码实现
      • Python 代码解释
    • C++
      • C++代码实现
      • C++ 代码解释
  • 总结

前言

在这个问题中,我们需要找到可以形成的最长数对链。数对 (a, b) 的链要求 a < b,并且数对链的连接需要满足 b1 < a2。这类似于寻找最长递增子序列的问题,可以通过动态规划或者贪心算法来解决。

贪心算法通过将数对按右端排序,并逐步选择满足条件的数对,能够在更短的时间内解决问题。本文将详细介绍动态规划和贪心策略,并提供 Python 和 C++ 代码示例,帮助你理解并掌握这一问题的解法。

题目描述

在这里插入图片描述

基本思路

1. 问题定义

给定一组数对 pairs,其中每个数对由两个整数组成 (a, b),并且 a < b。一条 数对链 是指可以将数对 (a1, b1)(a2, b2) 连接起来,满足 b1 < a2。你需要找到最长的数对链。

2. 理解问题和递推关系

这个问题类似于 最长递增子序列 的问题。我们需要选择数对,并构建满足条件的数对链,使得链的长度最大化。两种解法是常见的:

动态规划:对于每一个数对,检查它之前的所有数对是否满足 b1 < a2,如果满足,则更新当前数对能构成的最长链。
贪心策略:通过对数对的右端 b 进行排序,贪心地选择每一个数对,确保尽可能形成最长的数对链。

  • 动态规划方法
    1. 首先,将数对按照左端 a 进行升序排序,或者按照右端 b 进行升序排序。
    2. 定义 dp[i] 为以第 i 个数对为结尾的最长数对链的长度。
    3. 对于每一个数对 pairs[i],遍历之前的所有数对 pairs[j],检查 pairs[j][1] < pairs[i][0],即数对是否可以连接。如果可以,则更新 d p [ i ] = m x ( d p [ i ] , d p [ j ] + 1 ) dp[i] = mx(dp[i], dp[j] + 1) dp[i]=mx(dp[i],dp[j]+1)
    4. 最终,答案为 max(dp),即最长数对链的长度。
  • 贪心方法
    1. 首先,将数对按照右端 b 进行升序排序。
    2. 贪心地选择每个数对,在选择时保证其左端 a 大于上一个数对的右端 b,以确保形成最长链。
    3. 最终计数即为链的长度。

3. 解决方法

3.1 动态规划方法

  • 排序后,使用动态规划求解最优解。遍历每个数对,更新每个数对能够形成的最长链。

3.2 贪心方法

  • 排序后,通过贪心策略选择尽可能多的数对来构成最长链。

4. 进一步优化

  • 贪心方法 的时间复杂度是 O ( n l o g n ) O(n log n) O(nlogn),因为排序需要 O ( n l o g n ) O(n log n) O(nlogn) 的时间,而遍历一遍数对仅需要 O ( n ) O(n) O(n) 的时间。相比之下,动态规划的时间复杂度为 O ( n 2 ) O(n^2) O(n2),适合小规模数据。贪心方法在时间效率上更优。

5. 小总结

  • 动态规划方法可以通过递推公式解决,但时间复杂度较高,适合较小规模的输入。
  • 贪心方法是更优的选择,能够在 O ( n l o g n ) O(n log n) O(nlogn) 的时间复杂度内解决问题,适用于大规模输入。

以上就是最长数对链问题的基本思路。

代码实现

Python

Python3代码实现

class Solution:def findLongestChain(self, pairs: list[list[int]]) -> int:# 按照数对的第二个元素(右端点)进行升序排序pairs.sort(key=lambda x: x[1])# 初始化计数器和当前数对的结束位置cur_end = float('-inf')count = 0# 遍历每个数对for pair in pairs:# 如果当前数对可以与上一个数对连接if pair[0] > cur_end:cur_end = pair[1]  # 更新结束位置count += 1  # 更新数对链长度return count

Python 代码解释

  • 排序:首先按照数对的右端 b 进行升序排序,以便我们可以贪心地选择更多的数对。
  • 贪心选择:遍历每个数对,检查其左端 a 是否大于当前链的结束位置 cur_end,如果满足条件,则更新链的结束位置,并增加链的长度。
  • 返回结果:最终返回最长数对链的长度。

C++

C++代码实现

class Solution {
public:int findLongestChain(vector<vector<int>>& pairs) {// 按照数对的第二个元素(右端点)进行升序排序sort(pairs.begin(), pairs.end(), [](vector<int>& a, vector<int>& b) {return a[1] < b[1];});int cur_end = INT_MIN;  // 当前数对链的结束位置int count = 0;  // 初始化数对链的长度// 遍历每个数对for (const auto& pair : pairs) {if (pair[0] > cur_end) {  // 如果当前数对可以连接cur_end = pair[1];  // 更新链的结束位置count++;  // 增加链的长度}}return count;  // 返回最长数对链的长度}
};

C++ 代码解释

  • 排序:对数对的右端进行升序排序,方便后续的贪心选择。
  • 贪心选择:通过遍历数对,判断是否可以将当前数对加入链中。如果当前数对的左端大于前一个数对的右端,就可以将其加入,并更新链的长度。
  • 返回结果:最终返回最长数对链的长度。

总结

  • 动态规划方法能够通过递推计算每个数对的最长链,但时间复杂度较高,为 O ( n 2 ) O(n^2) O(n2)
  • 贪心算法通过排序和逐步选择,能够在 O ( n l o g n ) O(n log n) O(nlogn) 的时间内解决问题,是更高效的解法。
  • 本文提供的 Python 和 C++ 实现展示了贪心算法的高效性,希望能够帮助你解决类似的数对链问题。

http://www.mrgr.cn/news/47979.html

相关文章:

  • UE5 丧尸类杂兵的简单AI
  • GitLab安装及使用
  • QT集成IntelRealSense双目摄像头2,集成OpenGL
  • 打造RAG系统:四大向量数据库Milvus、Faiss、Elasticsearch、Chroma 全面对比与选型指南
  • js实现仿windows文件名称排序
  • 指针详解之 难点、易错点一次性彻底击碎!
  • DIFY上使用多种大语言模型(MindCraft API)
  • 《Linux从小白到高手》综合应用篇:详解Linux系统调优之服务器硬件优化
  • BypassUAC
  • 深度学习之常用数据集下载
  • C# Json文件写入、读取 ,Json文件序列化、反序列化
  • 【Java 22 | 1】 深入解析Java 22 :增强的模式匹配特性
  • 2024下半年软考中级网络工程师,这100题,必做!
  • Once In My Life(除法,思维)
  • Harbor镜像仓库安装配置及使用
  • 递归专题BFS
  • HJ212-2017协议详解:工业物联网环境监测标准简单了解
  • PCL将深度图转化为点云并存储为pcd文件
  • Verdin AM62使用CODESYS
  • 【Java SE 题库】递归的魅力之--> 汉诺塔问题
  • 初阶数据结构(2):空间复杂度和复杂度算法题
  • Alluxio在数据索引和模型分发中的核心价值与应用
  • vue3 + vite + cesium项目
  • ARM在嵌入式开发中的作用有哪些?
  • 攻防世界1
  • 51单片机数码管循环显示0~f