【数学二】极限的计算- 等价无穷小替换、洛必达法则求极限
考试要求
1、理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2、了解函数的有界性、单调性、周期性和奇偶性.
3、理解复合函数及分段函数的概念、了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形、了解初等函数的概念。
5、理解极限的概念、理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6、掌握极限的性质及四则运算法则.
7、.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
等价无穷小替换
等价无穷小替换定理
设 f 1 ( x ) ∼ f 2 ( x ) , g 1 ( x ) ∼ g 2 ( x ) ,且 lim f 2 ( x ) g 2 ( x ) f_1(x) \sim f_2(x),g_1(x) \sim g_2(x),且\lim \frac{f_2(x)}{g_2(x)} f1(x)∼f2(x),g1(x)∼g2(x),且limg2(x)f2(x)存在,则 lim f 1 ( x ) g 1 ( x ) = lim f 2 ( x ) g 2 ( x ) \lim \frac{f_1(x)}{g_1(x)}=\lim \frac{f_2(x)}{g_2(x)} limg1(x)f1(x)=limg2(x)f2(x)
TIPS
:
1、对分子或分母中的一个或几个
无穷小因子
作等价替换;
2、推广: lim f 1 ( x ) g 1 ( x ) = lim f 2 ( x ) g 2 ( x ) = lim f 1 ( x ) g 2 ( x ) = lim f 2 ( x ) g 1 ( x ) lim f 1 ( x ) h ( x ) g 1 ( x ) = f 2 ( x ) h ( x ) g 2 ( x ) = f 1 ( x ) h ( x ) g 2 ( x ) = f 2 ( x ) h ( x ) g 1 ( x ) lim f 1 ( x ) g 1 ( x ) h ( x ) = f 2 ( x ) g 2 ( x ) h ( x ) = f 1 ( x ) g 2 ( x ) h ( x ) = f 2 ( x ) g 1 ( x ) h ( x ) lim f 1 ( x ) h ( x ) = lim f 2 ( x ) h ( x ) \lim \frac{f_1(x)}{g_1(x)}=\lim \frac{f_2(x)}{g_2(x)}=\lim \frac{f_1(x)}{g_2(x)}=\lim \frac{f_2(x)}{g_1(x)} \\ \quad \\ \lim \frac{f_1(x)h(x)}{g_1(x)}=\frac{f_2(x)h(x)}{g_2(x)}=\frac{f_1(x)h(x)}{g_2(x)}=\frac{f_2(x)h(x)}{g_1(x)} \\ \quad \\ \lim \frac{f_1(x)}{g_1(x)h(x)}=\frac{f_2(x)}{g_2(x)h(x)}=\frac{f_1(x)}{g_2(x)h(x)}=\frac{f_2(x)}{g_1(x)h(x)}\\ \quad \\ \lim {f_1(x)}{h(x)}=\lim {f_2(x)}{h(x)} limg1(x)f1(x)=limg2(x)f2(x)=limg2(x)f1(x)=limg1(x)f2(x)limg1(x)f1(x)h(x)=g2(x)f2(x)h(x)=g2(x)f1(x)h(x)=g1(x)f2(x)h(x)limg1(x)h(x)f1(x)=g2(x)h(x)f2(x)=g2(x)h(x)f1(x)=g1(x)h(x)f2(x)limf1(x)h(x)=limf2(x)h(x)
3、和差关系
在满足一定条件下可以作等价替换: 若 lim f 1 ( x ) g 1 ( x ) = A ≠ 1 , 则 lim [ f 1 ( x ) − g 1 ( x ) ] = lim [ f 2 ( x ) − g 2 ( x ) ] 若 lim f 1 ( x ) g 1 ( x ) = A ≠ − 1 , 则 lim [ f 1 ( x ) + g 1 ( x ) ] = lim [ f 2 ( x ) + g 2 ( x ) ] 若\lim \frac{f_1(x)}{g_1(x)}=A\ne 1,则\lim [f_1(x)-g_1(x)]=\lim [f_2(x)-g_2(x)]\\ \quad \\若\lim \frac{f_1(x)}{g_1(x)}=A\ne -1,则\lim [f_1(x)+g_1(x)]=\lim [f_2(x)+g_2(x)] 若limg1(x)f1(x)=A=1,则lim[f1(x)−g1(x)]=lim[f2(x)−g2(x)]若limg1(x)f1(x)=A=−1,则lim[f1(x)+g1(x)]=lim[f2(x)+g2(x)]
常用等价无穷小
:当 x → 0 x \to 0 x→0 sin x ∼ x , tan x ∼ x , arcsin x ∼ x , arctan x ∼ x 1 − cos x ∼ 1 2 x 2 , ln ( 1 + x ) ∼ x , e x − 1 ∼ x , a x − 1 ∼ x ln a ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) , 1 + x − 1 − x ∼ x x − sin x ∼ 1 6 x 3 , tan x − x ∼ 1 3 x 3 x − ln ( 1 + x ) ∼ 1 2 x 2 , arcsin x − x ∼ 1 6 x 3 x − arctan x ∼ 1 3 x 3 \sin x \sim x,\tan x \sim x,\arcsin x \sim x,\arctan x \sim x\\ \quad \\ 1-\cos x \sim \frac{1}{2}x^2,\ln (1+x) \sim x ,e^x-1 \sim x,a^x-1 \sim x\ln a\\ \quad \\ (1+x)^\alpha-1 \sim \alpha x(\alpha \ne 0),\sqrt{1+x}-\sqrt{1-x} \sim x \\ \quad \\ x-\sin x \sim \frac{1}{6}x^3,\tan x -x \sim \frac{1}{3}x^3\\ \quad \\ x-\ln (1+x) \sim \frac{1}{2}x^2,\arcsin x -x \sim \frac{1}{6}x^3\\ \quad \\ x-\arctan x \sim \frac{1}{3}x^3 sinx∼x,tanx∼x,arcsinx∼x,arctanx∼x1−cosx∼21x2,ln(1+x)∼x,ex−1∼x,ax−1∼xlna(1+x)α−1∼αx(α=0),1+x−1−x∼xx−sinx∼61x3,tanx−x∼31x3x−ln(1+x)∼21x2,arcsinx−x∼61x3x−arctanx∼31x3
练习1
: lim x → 0 x ln ( 1 + x ) 1 − cos x \lim_{x \to 0}\frac{x\ln(1+x)}{1-\cos x} limx→01−cosxxln(1+x)=?
知识点
: ln ( 1 + x ) ∼ x , 1 − cos x ∼ 1 2 x 2 \ln (1+x) \sim x,1-\cos x \sim \frac{1}{2}x^2 ln(1+x)∼x,1−cosx∼21x2
解
: lim x → 0 x ln ( 1 + x ) 1 − cos x = lim x → 0 x 2 1 2 x 2 = 2 \lim_{x \to 0}\frac{x\ln(1+x)}{1-\cos x}=\lim_{x \to 0}\frac{x^2}{\frac{1}{2}x^2}=2 x→0lim1−cosxxln(1+x)=x→0lim21x2x2=2
练习2
: lim x → ∞ x sin 2 x x 2 + 1 \lim_{x \to \infty} x\sin \frac{2x}{x^2+1} limx→∞xsinx2+12x=?
知识点
:当 x → 0 sin x ∼ x x \to 0\sin x \sim x x→0sinx∼x
解
: lim x → ∞ 2 x x 2 + 1 = 0 sin 2 x x 2 + 1 ∼ 2 x x 2 + 1 lim x → ∞ x 2 x x 2 + 1 = 2 \lim_{x \to \infty} \frac{2x}{x^2+1}=0 \\ \quad \\ \sin \frac{2x}{x^2+1} \sim \frac{2x}{x^2+1} \\ \quad \\ \lim_{x \to \infty} x \frac{2x}{x^2+1}=2 x→∞limx2+12x=0sinx2+12x∼x2+12xx→∞limxx2+12x=2
练习3
: lim x → 0 3 sin x + x 2 cos 1 x ( 1 + c o s x ) ln ( 1 + x ) \lim_{x \to 0}\frac{3\sin x +x^2\cos \frac{1}{x}}{(1+cosx)\ln(1+x)} x→0lim(1+cosx)ln(1+x)3sinx+x2cosx1?
知识点
:
1、 ln ( 1 + x ) ∼ x , lim f 1 ( x ) h ( x ) = lim f 2 ( x ) h ( x ) \ln (1+x) \sim x,\lim {f_1(x)}{h(x)}=\lim {f_2(x)}{h(x)} ln(1+x)∼x,limf1(x)h(x)=limf2(x)h(x)
2、无穷小量与有界量的积仍是无穷小;
解
: lim x → 0 3 sin x + x 2 cos 1 x ( 1 + c o s x ) ln ( 1 + x ) = lim x → 0 3 sin x + x 2 cos 1 x ( 1 + c o s x ) x ( ln ( 1 + x ) ∼ x ) lim x → 0 3 sin x x + x cos 1 x ( 1 + c o s x ) = 3 + 0 2 = 3 2 ( x cos 1 x : 无穷小量与有界量的积仍是无穷小 ) 即: lim x → 0 3 sin x + x 2 cos 1 x ( 1 + c o s x ) ln ( 1 + x ) = 3 2 \lim_{x \to 0}\frac{3\sin x +x^2\cos \frac{1}{x}}{(1+cosx)\ln(1+x)}=\lim_{x \to 0}\frac{3\sin x +x^2\cos \frac{1}{x}}{(1+cosx)x} \quad (\ln (1+x) \sim x) \\\ \qquad \\ \lim_{x \to 0}\frac{3\frac{\sin x} {x}+x\cos \frac{1}{x}}{(1+cosx)}=\frac{3+0}{2}=\frac{3}{2} \quad (x\cos \frac{1}{x}:无穷小量与有界量的积仍是无穷小)\\\ \qquad \\ 即:\lim_{x \to 0}\frac{3\sin x +x^2\cos \frac{1}{x}}{(1+cosx)\ln(1+x)}=\frac{3}{2} x→0lim(1+cosx)ln(1+x)3sinx+x2cosx1=x→0lim(1+cosx)x3sinx+x2cosx1(ln(1+x)∼x) x→0lim(1+cosx)3xsinx+xcosx1=23+0=23(xcosx1:无穷小量与有界量的积仍是无穷小) 即:x→0lim(1+cosx)ln(1+x)3sinx+x2cosx1=23
练习4
: lim x → 0 sin x − tan x ( 1 + x 2 3 − 1 ) ( 1 + sin x − 1 ) \lim_{x \to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)} limx→0(31+x2−1)(1+sinx−1)sinx−tanx
知识点
: ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) , 1 − cos x ∼ 1 2 x 2 (1+x)^\alpha-1 \sim \alpha x(\alpha \ne 0),1-\cos x \sim \frac{1}{2}x^2 (1+x)α−1∼αx(α=0),1−cosx∼21x2
解
: ( 1 + x 2 3 − 1 ) ∼ 1 3 x 2 , ( 1 + sin x − 1 ) ∼ 1 2 sin x lim x → 0 sin x − tan x ( 1 + x 2 3 − 1 ) ( 1 + sin x − 1 ) = lim x → 0 sin x − tan x 1 3 x 2 1 2 sin x = lim x → 0 1 − 1 cos x 1 3 x 2 1 2 lim x → 0 1 − 1 cos x 1 3 x 2 1 2 = lim x → 0 cos x − 1 1 3 x 2 1 2 cos x = lim x → 0 − 1 2 x 2 1 3 x 2 1 2 cos x = − 3 ( lim x → 0 cos x = 1 ) 既: lim x → 0 sin x − tan x ( 1 + x 2 3 − 1 ) ( 1 + sin x − 1 ) = − 3 (\sqrt[3]{1+x^2}-1) \sim \frac{1}{3}x^2,(\sqrt{1+\sin x}-1) \sim \frac{1}{2}\sin x \\\ \qquad \\ \lim_{x \to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)}= \lim_{x \to 0} \frac{\sin x - \tan x}{\frac{1}{3}x^2\frac{1}{2}\sin x }=\lim_{x \to 0} \frac{1 - \frac{1}{\cos x}}{\frac{1}{3}x^2\frac{1}{2} } \\ \quad \\ \lim_{x \to 0} \frac{1 - \frac{1}{\cos x}}{\frac{1}{3}x^2\frac{1}{2} }=\lim_{x \to 0} \frac{\cos x - 1}{\frac{1}{3}x^2\frac{1}{2}\cos x }=\lim_{x \to 0} \frac{-\frac{1}{2}x^2}{\frac{1}{3}x^2\frac{1}{2}\cos x }=-3(\lim_{x \to 0} \cos x=1)\\ \quad \\ 既:\lim_{x \to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)}=-3 (31+x2−1)∼31x2,(1+sinx−1)∼21sinx x→0lim(31+x2−1)(1+sinx−1)sinx−tanx=x→0lim31x221sinxsinx−tanx=x→0lim31x2211−cosx1x→0lim31x2211−cosx1=x→0lim31x221cosxcosx−1=x→0lim31x221cosx−21x2=−3(x→0limcosx=1)既:x→0lim(31+x2−1)(1+sinx−1)sinx−tanx=−3
练习5
: lim x → 0 e − e cos x 1 + x 2 3 − 1 \lim_{x \to 0}\frac{e-e^{\cos x}}{\sqrt[3]{1+x^2}-1} limx→031+x2−1e−ecosx?
知识点
: e x − 1 ∼ x , ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) , 1 − cos x ∼ 1 2 x 2 e^x-1 \sim x,(1+x)^\alpha-1 \sim \alpha x(\alpha \ne 0),1-\cos x \sim \frac{1}{2}x^2 ex−1∼x,(1+x)α−1∼αx(α=0),1−cosx∼21x2
解
: lim x → 0 e − e cos x 1 + x 2 3 − 1 = lim x → 0 e ( 1 − e cos x − 1 ) 1 + x 2 3 − 1 lim x → 0 e ( 1 − e cos x − 1 ) 1 + x 2 3 − 1 = lim x → 0 e ( 1 − cos x ) 1 3 x 2 = lim x → 0 e 1 2 x 2 1 3 x 2 = 3 2 e \lim_{x \to 0}\frac{e-e^{\cos x}}{\sqrt[3]{1+x^2}-1}=\lim_{x \to 0}\frac{e(1-e^{\cos x-1)}}{\sqrt[3]{1+x^2}-1} \\ \quad \\ \lim_{x \to 0}\frac{e(1-e^{\cos x-1)}}{\sqrt[3]{1+x^2}-1} =\lim_{x \to 0}\frac{e(1-\cos x)}{\frac{1}{3}x^2} =\lim_{x \to 0}\frac{e\frac{1}{2}x^2}{\frac{1}{3}x^2} =\frac{3}{2}e x→0lim31+x2−1e−ecosx=x→0lim31+x2−1e(1−ecosx−1)x→0lim31+x2−1e(1−ecosx−1)=x→0lim31x2e(1−cosx)=x→0lim31x2e21x2=23e
练习6
: lim x → 0 ln ( cos x ) x 2 \lim_{x \to 0}\frac{\ln (\cos x)}{x^2} limx→0x2ln(cosx)
知识点
: ln ( 1 + x ) ∼ x \ln (1+x) \sim x ln(1+x)∼x
解
: lim x → 0 ln ( cos x ) x 2 = lim x → 0 ln ( 1 + cos x − 1 ) x 2 lim x → 0 cos x − 1 x 2 = − 1 2 \lim_{x \to 0}\frac{\ln (\cos x)}{x^2}=\lim_{x \to 0}\frac{\ln (1+\cos x-1)}{x^2} \\ \quad \\ \lim_{x \to 0}\frac{\cos x-1}{x^2}=-\frac{1}{2} x→0limx2ln(cosx)=x→0limx2ln(1+cosx−1)x→0limx2cosx−1=−21
洛必达法则求极限
定义
若:
1、 lim x → x 0 f ( x ) = lim x → x 0 g ( x ) = 0 (或 ∞ ) \lim_{x \to x_0}f(x)=\lim_{x \to x_0}g(x)=0(或\infty) limx→x0f(x)=limx→x0g(x)=0(或∞);
2、 f ( x ) 和 g ( x ) f(x)和g(x) f(x)和g(x)在 x 0 x_0 x0的某去心领域内可导,且 g ′ ( x ) ≠ 0 g^{'}(x) \ne 0 g′(x)=0;
3、 lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x^0}\frac{f^{'}(x) }{g^{'}(x) } limx→x0g′(x)f′(x)存在(或 ∞ \infty ∞)
则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x^0}\frac{f(x) }{g(x) }=\lim_{x \to x^0}\frac{f^{'}(x) }{g^{'}(x) } limx→x0g(x)f(x)=limx→x0g′(x)f′(x)
TIPS:
1、洛必达法则适应类型
洛必达法则可用来求七种类型不定式的极限: 0 0 、 ∞ ∞ 、 ∞ ± ∞ 、 0 ⋅ ∞ 、 1 ∞ 、 ∞ 0 、 0 0 \frac{0}{0}、\frac{\infty}{\infty}、\infty \pm \infty、0\cdot\infty、1^{\infty}、\infty^0、0^0 00、∞∞、∞±∞、0⋅∞、1∞、∞0、00
0 0 、 ∞ ∞ \frac{0}{0}、\frac{\infty}{\infty} 00、∞∞可以直接用洛必达法则,其他五种都可转为$ 0 0 、 ∞ ∞ \frac{0}{0}、\frac{\infty}{\infty} 00、∞∞然后使用洛必达法则。
2、使用洛必达法则注意事项
1、要先检验其条件是否满足
2、符合洛必达法则条件,可以连续使用洛必达法则;
3、含有极限非零的因子,可单独求极限;
4、能进行等价无穷小替换或恒等变形的可以配合洛必达使用,也可简化运算;
练习1
: lim x → 0 arctan x − sin x x 3 \lim_{x \to 0}\frac{\arctan x - \sin x}{x^3} limx→0x3arctanx−sinx=?
知识点
:
1、 0 0 \frac{0}{0} 00洛必达法则
2、含有极限非零的因子,可单独求极限;
3、 1 − cos x ∼ 1 2 x 2 , x − sin x ∼ 1 6 x 3 , x − arctan x ∼ 1 3 x 3 1-\cos x \sim \frac{1}{2}x^2,x -\sin x \sim \frac{1}{6}x^3, x-\arctan x \sim \frac{1}{3}x^3 1−cosx∼21x2,x−sinx∼61x3,x−arctanx∼31x3
解法1
: ( arctan x − sin x ) ′ = 1 1 + x 2 − cos x ( x 3 ) ′ = 3 x 2 代入整理得: lim x → 0 arctan x − sin x x 3 = lim x → 0 1 − cos x − x 2 cos x 3 x 2 ( 1 + x 2 ) lim x → 0 1 − cos x − x 2 cos x 3 x 2 ( 1 + x 2 ) = lim x → 0 1 3 ( 1 + x 2 ) ⋅ lim x → 0 ( 1 − cos x x 2 − cos x ) = 1 3 ⋅ ( 1 2 − 1 ) = − 1 6 ({\arctan x - \sin x})^{'}=\frac{1}{1+x^2}-\cos x\\ \quad \\ (x^3)^{'}=3x^2 \\ \quad \\ 代入整理得:\lim_{x \to 0}\frac{\arctan x - \sin x}{x^3}=\lim_{x \to 0}\frac{1-\cos x -x^2\cos x}{3x^2(1+x^2)}\\ \quad \\ \lim_{x \to 0}\frac{1-\cos x -x^2\cos x}{3x^2(1+x^2)}= \lim_{x \to 0}\frac{1}{3(1+x^2)}\cdot \lim_{x \to 0}(\frac{1-\cos x}{x^2}-\cos x)=\frac{1}{3}\cdot(\frac{1}{2}-1)=-\frac{1}{6} (arctanx−sinx)′=1+x21−cosx(x3)′=3x2代入整理得:x→0limx3arctanx−sinx=x→0lim3x2(1+x2)1−cosx−x2cosxx→0lim3x2(1+x2)1−cosx−x2cosx=x→0lim3(1+x2)1⋅x→0lim(x21−cosx−cosx)=31⋅(21−1)=−61
解法2
: lim x → 0 arctan x − sin x x 3 = lim x → 0 arctan x − x + x − sin x x 3 lim x → 0 arctan x − x x 3 + lim x → 0 x − sin x x 3 = − 1 3 + 1 6 = − 1 6 \lim_{x \to 0}\frac{\arctan x - \sin x}{x^3}=\lim_{x \to 0}\frac{\arctan x -x+x- \sin x}{x^3}\\ \quad \\ \lim_{x \to 0}\frac{\arctan x -x}{x^3}+\lim_{x \to 0}\frac{x- \sin x}{x^3}=-\frac{1}{3}+\frac{1}{6}=-\frac{1}{6} x→0limx3arctanx−sinx=x→0limx3arctanx−x+x−sinxx→0limx3arctanx−x+x→0limx3x−sinx=−31+61=−61
练习2
: lim x → 0 e x − e − x − 2 x x − sin x \lim_{x \to 0}\frac{e^x-e^{-x}-2x}{x-\sin x} limx→0x−sinxex−e−x−2x=?
知识
:
1、 0 0 \frac{0}{0} 00洛必达法则
解
: lim x → 0 e x − e − x − 2 x x − sin x = lim x → 0 e x + e − x − 2 1 − cos x lim x → 0 e x − e − x sin x = lim x → 0 e x + e − x cos x = 2 \lim_{x \to 0}\frac{e^x-e^{-x}-2x}{x-\sin x}=\lim_{x \to 0}\frac{e^x+e^{-x}-2}{1-\cos x} \\ \quad \\ \lim_{x \to 0}\frac{e^x-e^{-x}}{\sin x}=\lim_{x \to 0}\frac{e^x+e^{-x}}{\cos x}=2 x→0limx−sinxex−e−x−2x=x→0lim1−cosxex+e−x−2x→0limsinxex−e−x=x→0limcosxex+e−x=2
练习3
: lim n → ∞ ( n tan 1 n ) n 2 \lim_{n \to \infty}(n\tan \frac{1}{n})^{n^2} limn→∞(ntann1)n2=?
知识点
:
1、等价无穷小替换 ln ( 1 + x ) ∼ x , t a n x − x ∼ 1 3 x 3 \ln (1+x) \sim x,tan x -x \sim \frac{1}{3}x^3 ln(1+x)∼x,tanx−x∼31x3
解
: lim n → ∞ ( n tan 1 n ) n 2 = e lim n → ∞ n 2 ln ( n tan 1 n ) lim n → ∞ n 2 ln ( n tan 1 n ) = lim n → ∞ ln ( 1 + n tan 1 n − 1 ) 1 n 2 lim n → ∞ ln ( 1 + n tan 1 n − 1 ) 1 n 2 = lim n → ∞ n tan 1 n − 1 1 n 2 = lim n → ∞ tan 1 n − 1 n 1 n 3 lim n → ∞ tan 1 n − 1 n 1 n 3 = lim n → ∞ 1 3 n 3 1 n 3 = 1 3 \lim_{n \to \infty}(n\tan \frac{1}{n})^{n^2}=e^{\lim_{n \to \infty}n^2\ln (n\tan \frac{1}{n})} \\ \quad \\\lim_{n \to \infty}n^2\ln (n\tan \frac{1}{n})=\lim_{n \to \infty}\frac{\ln (1+n\tan \frac{1}{n}-1)}{\frac{1}{n^2}} \\ \quad \\ \lim_{n \to \infty}\frac{\ln (1+n\tan \frac{1}{n}-1)}{\frac{1}{n^2}} =\lim_{n \to \infty}\frac{n\tan \frac{1}{n}-1}{\frac{1}{n^2}}=\lim_{n \to \infty}\frac{\tan \frac{1}{n}-\frac{1}{n}}{\frac{1}{n^3}} \\ \quad \\ \lim_{n \to \infty}\frac{\tan \frac{1}{n}-\frac{1}{n}}{\frac{1}{n^3}}=\lim_{n \to \infty}\frac{\frac{1}{3n^3}{}}{\frac{1}{n^3}}=\frac{1}{3} n→∞lim(ntann1)n2=elimn→∞n2ln(ntann1)n→∞limn2ln(ntann1)=n→∞limn21ln(1+ntann1−1)n→∞limn21ln(1+ntann1−1)=n→∞limn21ntann1−1=n→∞limn31tann1−n1n→∞limn31tann1−n1=n→∞limn313n31=31
练习4
: lim x → 0 e x 2 − e 2 − 2 cos x x 4 \lim_{x \to 0}\frac{e^{x^2}-e^{2-2\cos x}}{x^4} limx→0x4ex2−e2−2cosx=?
知识点
:
1、等价无穷小 e x − 1 ∼ x , x − sin x ∼ 1 6 x 3 e^x-1 \sim x,x -\sin x \sim \frac{1}{6}x^3 ex−1∼x,x−sinx∼61x3
2、 0 0 \frac{0}{0} 00洛必达法则
解
: lim x → 0 e x 2 − e 2 − 2 cos x x 4 = lim x → 0 e 2 − 2 cos x ( e x 2 − 2 + 2 cos x − 1 ) x 4 = lim x → 0 x 2 − 2 + 2 cos x x 4 ( 等价无穷小 ) lim x → 0 x 2 − 2 + 2 cos x x 4 = lim x → 0 2 x − 2 sin x 4 x 3 (洛必达) lim x → 0 2 x − 2 sin x 4 x 3 = lim x → 0 1 6 x 3 2 x 3 = 1 12 (等价替换) \lim_{x \to 0}\frac{e^{x^2}-e^{2-2\cos x}}{x^4}=\lim_{x \to 0}\frac{e^{2-2\cos x}(e^{x^2-2+2\cos x}-1)}{x^4}=\lim_{x \to 0}\frac{x^2-2+2\cos x}{x^4}(等价无穷小)\\ \quad \\ \lim_{x \to 0}\frac{x^2-2+2\cos x}{x^4}=\lim_{x \to 0}\frac{2x-2\sin x}{4x^3}(洛必达)\\ \quad \\ \lim_{x \to 0}\frac{2x-2\sin x}{4x^3}=\lim_{x \to 0}\frac{\frac{1}{6}x^3}{2x^3}=\frac{1}{12}(等价替换) x→0limx4ex2−e2−2cosx=x→0limx4e2−2cosx(ex2−2+2cosx−1)=x→0limx4x2−2+2cosx(等价无穷小)x→0limx4x2−2+2cosx=x→0lim4x32x−2sinx(洛必达)x→0lim4x32x−2sinx=x→0lim2x361x3=121(等价替换)