当前位置: 首页 > news >正文

大数据Flink(一百二十四):案例实践——淘宝母婴数据加速查询

文章目录

案例实践——淘宝母婴数据加速查询

一、​​​​​​​创建数据库表并导入数据

二、​​​​​​​​​​​​​​创建session集群

三、​​​​​​​​​​​​​​源表查询

四、​​​​​​​​​​​​​​指标计算


案例实践——淘宝母婴数据加速查询

随着“全面二孩”政策落地、居民可支配收入稳步增加等因素的刺激,中国的母婴消费市场正迎来黄金时代。与此同时,随着国民消费升级90后宝爸、宝妈人数剧增,消费需求与消费理念都发生了巨大的变化。据罗兰贝格最新公布的报告预计,已经经过了16个年头发展的母婴行业,到2020年,整体规模将达到3.6万亿元,2016-2020年复合增速高达17%,行业前景看起来一片光明。如此大好形势下,母婴人群在母婴消费上有什么特点?消费最高的项目是什么?

本场景将以阿里云实时计算Flink版为基础,使用Flink自带的 MySQL Connector连接RDS云数据库实例,并以一个淘宝母婴订单实时查询的例子尝试上手Connector的数据捕获、数据变更等功能。

本场景中订单和婴儿信息存储在MySQL中,对于订单表,为了方便进行分析,我们让它关联上其对应的婴儿信息,构成一张宽表。另一方面数据经过分组聚合后,计算出订单数量和婴儿出生的关系。

按步骤完成本次实验后,您将掌握的知识有:

  1. 使用Flink实时计算平台创建并提交作业的方法;
  2. 编写基于Flink Table API SQL语句的能力;
  3. 使用MySQL Connector对数据库进行读取的方法;

一、​​​​​​​​​​​​​​创建数据库表并导入数据

在这个例子中,我们将创建三张数据表,其中一张orders_dataset_tmp是导入数据的临时表,其他两张作为源表,体验淘宝母婴订单实时查询。

进入mysql管理平台DMS,单击数据库实例,在已登录实例中找到test数据库,并双击数据库。

在SQLConsole页签中,输入如下SQL建表语句,然后单击执行。

create table orders_dataset_tmp(user_id bigint comment '用户身份信息',			auction_id bigint comment '购买行为编号',		cat_id bigint comment '商品种类序列号',			cat1 bigint comment '商品序列号(根类别)',				property TEXT comment '商品属性',			buy_mount int comment '购买数量',			day TEXT comment '购买时间'				
);create table orders_dataset(order_id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY comment '订单id',user_id bigint comment '用户身份信息',			auction_id bigint comment '购买行为编号',		cat_id bigint comment '商品种类序列号',			cat1 bigint comment '商品序列号(根类别)',				property TEXT comment '商品属性',			buy_mount int comment '购买数量',			day TEXT comment '购买时间'				
);--
create table baby_dataset(user_id bigint NOT NULL PRIMARY KEY,	birthday text comment '婴儿生日',gender int comment '0 denotes female, 1 denotes male, 2 denotes unknown'
);

在DMS数据管理平台,选择左侧的常用功能>数据导入。 

配置如下信息后单击提交申请,将 (sample)sam_tianchi_mum_baby_trade_history.csv 导入 orders_dataset_tmp 表。

点击提交申请后,等待审批完成,点击执行变更,返回如下结果,数据导入完成。

 

重复上述步骤,将(sample)sam_tianchi_mum_baby.csv 导入 baby_dataset 表。

导入完成之后,在SQLConsole页签中,输入如下SQL,然后单击执行,将订单数据导入到订单源表orders_dataset 中。

insert into orders_dataset(user_id,auction_id,cat_id,cat1,property,buy_mount,day)
select * from orders_dataset_tmp;

可以看到几张表中都有了数据。

SELECT * FROM `baby_dataset` ;

SELECT * FROM `orders_dataset` ;

查询表数据条数

SELECT count(1) FROM `baby_dataset` ;

二、​​​​​​​​​​​​​​创建session集群

使用之前的flink-sql-test-session集群即可。如若没有,安装下面步骤创建。

  • 登录实时计算控制台。
  • 在Flink全托管页签,单击目标工作空间名称对应应操作列下的控制台。
  • 在左侧导航栏,单击Session集群。
  • 单击创建Session集群。

表格中未提及的参数保持默认值即可,需要配置的参数说明请参见下表。

配置项

说明

配置示例

名称

Session集群名称。

flink-sql-test-session

状态

设置当前集群的期望运行状态:

  • STOPPED:当集群配置完成后保持停止状态,同样会停止所有在运行中的作业。
  • RUNNING:当集群配置完成后保持运行状态。

RUNNING

引擎版本

Session集群引擎版本号。

vvr-6.0.7-flink-1.15

Task Managers数量

默认与并行度保持一致。

4

  • 单击创建Session集群。

当Session集群状态(页面上方集群名称旁边)从启动中变为运行中后,可以进入后续步骤。

三、​​​​​​​​​​​​​​源表查询

  • 进入Flink开发平台,点击作业开发,在demo文件夹下创建monther-baby-test流作业草稿,版本选择vvr-6.0.7-flink-1.15。创建源表,代码如下
CREATE TABLE orders_dataset (order_id BIGINT,`user_id` bigint,			auction_id bigint,		cat_id bigint,			cat1 bigint,				property varchar,			buy_mount int,			`day` varchar	,PRIMARY KEY(order_id) NOT ENFORCED
) WITH ('connector' = 'mysql','hostname' = 'rm-cn-g4t3gzb9789789ca.rwlb.rds.aliyuncs.com','port' = '3306','username' = 'itlanson','password' = 'It123','database-name' = 'test','table-name' = 'orders_dataset'
);
CREATE TABLE baby_dataset (`user_id` bigint,birthday varchar,gender int,PRIMARY KEY(user_id) NOT ENFORCED
) WITH ('connector' = 'mysql','hostname' = 'rm-cn-g4t3gzb9789789ca.rwlb.rds.aliyuncs.com','port' = '3306','username' = 'itlanson','password' = 'It123','database-name' = 'test','table-name' = 'baby_dataset'
);

选中代码,点击左上角运行,完成表的创建。创建完之后,可以在元数据中的vvp.default下看到表。

  • 查询表数据
select * from baby_dataset;

选中代码,点击调试,提交到flink-sql-test-session集群。结果如下

 

select * from orders_dataset;

选中代码,点击调试,查询结果如下

  • 查询数据条数,代码如下
select count(1) from baby_dataset;

选择代码后,点击调试。

可以看到控制台的结果在不断增大,达到500会暂停。这是因为默认查询500条,此时需要点击左侧的绿色箭头,恢复查询。

最后结果如下,可以看到,与mysql中的对应表数据条数相同。

 

此时,在mysql中向baby_dataset表插入一条数据

insert into baby_dataset values (99999999,'20130101',1);

回到flink控制台,可以看到,计数结果也增加了。

点击红色按钮停止查询。然后查询刚才插入的数据。

SELECT * FROM `baby_dataset` 
where user_id=99999999;

此时,在mysql将此条数据的生日进行更改 

UPDATE baby_dataset SET birthday = '20140101' WHERE user_id = 99999999;

执行成功后,观察flink控制台的变化,发现数据也完成了更改。

 

四、​​​​​​​​​​​​​​指标计算

我们希望对原始数据按照 user_id 进行 JOIN,构成一张宽表。查询orders_dataset和baby_dataset表的关联结果,代码如下:

SELECT o.*,b.birthday,b.gender
FROM orders_dataset /*+ OPTIONS('server-id'='123450-123452') */ o
LEFT JOIN baby_dataset /*+ OPTIONS('server-id'='123453-123455') */ as bON o.user_id = b.user_id;

选中代码,点击调试,结果如下

接下来,我们希望对原始数据按照 user_id 进行 JOIN,构成一张宽表。然后对宽表数据的订单时间取到月份进行分组 GROUP BY,并统计每个分组中订单的购买数量SUM和出生婴儿的数量COUNT。代码如下

SELECT SUBSTRING(tmp1.`day` FROM 1 FOR 6) as year_mon,SUM(tmp1.buy_mount) as buy_num,COUNT(birthday) as baby_num
FROM(SELECT o.*,b.birthday,b.genderFROM orders_dataset /*+ OPTIONS('server-id'='123456-123457') */ oLEFT JOIN baby_dataset /*+ OPTIONS('server-id'='123458-123459') */ as bON o.user_id = b.user_id
) tmp1
GROUP BY SUBSTRING(tmp1.`day` FROM 1 FOR 6);

选中代码,点击调试,结果如下


 

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

http://www.mrgr.cn/news/35178.html

相关文章:

  • Docker+Django项目部署-从Linux+Windows实战
  • 1、C语言学习专栏介绍
  • 【Fermat】费马小定理
  • 搜维尔科技:SenseGlove触觉反馈手套开箱+场景测试
  • 【Hadoop】【hdfs】【大数据技术基础】课程 作业四 可视化工具的使用 大数据基础编程、实验和案例教程(第2版)
  • C语言的内存函数
  • CaLM 因果推理评测体系:如何让大模型更贴近人类认知水平?
  • 英码科技亮相华为全联接大会2024,携手共赢行业智能化
  • Mapbox封装图形绘制工具 线,圆,polygon,删除,点 mapbox-gl-draw-circle mapbox-gl-draw
  • Pytorch实现Transformer
  • 用OpenSSL搭建PKI证书体系
  • 安卓驱动的部分命令总结
  • 中国科学院云南天文台博士招生目录
  • 宠物空气净化器去浮毛哪家强?希喂、美的和米家实测分享
  • 编曲为什么这么难学 编曲应该从何下手,想要学习编曲,一定要有扎实的乐理基础知识
  • 汽车售后诊断ECU参数分析
  • Leetcode 反转链表
  • 怎么把照片转换成jpg格式?这5种转换方法简单高效
  • MNE读取数据单位问题
  • akamai解混淆(ast)
  • 穿透式薪酬监管,红海云打造“三全”数智化薪酬管理系统
  • 近千亿市场开卷!AutoDisplay Week 2024车载显示产业周开放注册!
  • 性能测试工具——JMeter
  • vue2若依项目打包部署页面不请求或404
  • vant Uploader 文件上传 修改上传icon样式
  • Qt:关于16进制数转化那些事