当前位置: 首页 > news >正文

2024华为杯研赛E题保姆级教程思路分析

E题题目:高速公路应急车道紧急启用模型

今年的E题设计到图像/视频处理,实际上,E题的难度相对来说较低,大家不用畏惧视频的处理,被这个吓到。实际上,这个不难,解决了视频的处理问题,剩下的问题难度相对不高。

1 总体分析

1.1 问题背景:

本题背景围绕高速公路拥堵现象,主要探讨如何合理利用应急车道缓解车流压力。高速公路瓶颈路段(如匝道和桥梁入口)容易发生拥堵,而扩宽车道代价高昂,因此在特定情况下临时启用应急车道成为有效解决方案。题目要求通过监测四个观测点的交通参数(车流量、密度、速度),建立数学模型进行拥堵预警,评估临时使用应急车道的效果,并优化监控点布局,以帮助管理者做出科学决策。

1.2 问题设定:

问题一

针对题目提供的数据,统计四个观测点的交通流参数随时间的变化规律:

车流量的变化规律:分析四个观测点的车流量随时间的变化情况。车流量指的是单位时间内通过某个观测点的车辆数量。

车流密度的变化规律:分析四个观测点的车流密度随时间的变化情况。车流密度指的是单位长度内的车辆数,反映了车道上车辆的分布情况。

车速的变化规律:分析四个观测点的车速随时间的变化情况。车速是指通过某个观测点的车辆的平均速度。

问题二

建立交通流拥堵模型,利用交通流在四个观测点的基本参数(车流密度、流量、速度等)以及道路情况(两行车道),给出从第三点到第四点之间路段可能出现持续拥堵的实时预警(如:拥堵10分钟前预警)及其依据。

问题三

利用题目提供的监控视频数据验证所建立模型的有效性。通过观测数据来评估模型的准确性和适用性

问题四

设计合理的规则或算法,实时决策是否启用应急车道,并量化模型启用应急车道对缓解道路拥堵的作用。监控数据没有针对应急车道的启用问题布置,因此需要结合实际情况,提出合理的监控点设置方案,以提升决策的科学性和经济性。

1.3 核心要点:

该问题属于交通工程与应急管理优化类型的数学建模题,具体涉及交通流模型、实时监控与预警、决策优化等方面。它综合了交通流理论、统计分析、动态决策和优化控制,要求对高速公路上的交通流变化进行实时建模,并提出有效的应急车道启用策略。

解题的关键是交通参数的统计与预测、拥堵预警模型的构建、应急车道启用的优化决策,并通过数据验证确保模型的实用性和准确性。

1.4建模思路:

数据预处理与分析:

提取和整理数据:从四个观测点的视频数据中提取车流量、密度、速度等关键参数,完成数据清洗与整理。

时间序列分析:分析这些参数随时间变化的规律,为后续模型构建提供基础信息。

交通流模型的建立:

根据基本交通流理论(如流量-密度-速度关系模型),建立反映交通状态的模型,描述四个观测点之间的交通流动态变化。

选用合适的模型(如LWR模型、元胞自动机模型或马尔科夫链等),描述车辆在该路段的流动特性。

拥堵预警模型的构建:

根据交通流模型,设定拥堵阈值,通过观测到的车流密度、流量和速度变化,预测拥堵趋势,并实现对第三到第四观测点之间路段的实时预警(提前10分钟)。

应急车道启用决策模型:

在拥堵预警基础上,设计临时启用应急车道的决策规则,通过多指标(如车流量、车速、密度)判断何时启用应急车道。

利用优化算法(如动态规划、模糊逻辑、决策树等)优化启用策略,确保决策在不同拥堵情境下的有效性。

模型验证与效果评估:

利用实际监控视频数据验证模型的准确性,评估启用应急车道对缓解拥堵的效果,并进行模型的调整与优化。

监控点优化布局:

根据模型分析结果,提出监控点的优化布局方案,确保在第三至第四观测点之间的路段能够更科学、经济地进行实时监控与决策。

整体思路总结:

从数据分析入手,建立交通流和预警模型,设计应急车道启用策略,并通过模型验证与优化实现科学决策和布局优化。这一系列步骤形成了从数据到决策的完整数学建模流程。

2 问题分析与解题思路

首先针对问题一的三个小问,分别进行问题分析与解题思路。

问题1.1

(1)数据读取与预处理

从四个观测点的视频监控数据中提取各个时间段的车辆通过数量,并计算每个观测点在每个时间段内的车流量。

(2)车流量计算公式

利用该公式描述流量、密度和速度之间的关系,分析密度随时间的变化,并识别出高密度时期。

(5)时间序列与密度特征分析

绘制车流密度的时间变化曲线,提取密度的平均值、最大值、最小值等特征,识别潜在的拥堵时段。

2-4问后续更新

其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以看下面的名片获得哦!


http://www.mrgr.cn/news/31638.html

相关文章:

  • 【IEEE/EI会议】第八届先进电子材料、计算机与软件工程国际学术会议(AEMCSE 2025)
  • FreeRTOS源码(二) 任务调度
  • django入门【05】模型介绍——字段选项(二)
  • 大数据相关技术的基本概念?
  • 论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告
  • HarmonyOS 沉浸式状态实现的多种方式
  • ThreadLocal引发内存泄漏的原因及解决方案
  • 【CAPL实战】system variables系统变量的基础与应用
  • 九芯电子革新健康检测!语音播报血压计ic芯片解决方案
  • python股票分析常用库,A股什么时候才能停止下跌啊
  • 14.1.2-float浮动练习
  • 如何着手创建企业数据目录?(三)权限管理及版本控制
  • Spring Boot在高校心理教育辅导系统中的应用
  • 科研绘图系列:R语言箱线图和连线图(boxplot linechart)
  • 详解ChatBI Agent架构:打造高效数据统计系统
  • mysql批量修改表前缀
  • uniapp 微信小程序 订阅消息功能实现
  • 计算机组成原理之计算机软件和硬件的关系
  • LabVIEW编程能力如何能突飞猛进
  • vue3 本地windows下的字体的引用
  • 新峰商城之购物车(三)
  • 自然语言常见面试题及答案(116~120)
  • 会声会影2025视频剪辑教学
  • Go语言的垃圾回收(GC)机制的迭代和优化历史
  • 【Linux基础IO】深入Linux文件描述符与重定向:解锁高效IO操作的秘密
  • 283. 移动零