当前位置: 首页 > news >正文

常用的离散时间傅里叶变换(DTFT)对

矩形序列与抽样函数
  • 时域信号
    x [ n ] = { 1 , 0 ⩽ n ⩽ N − 1 0 , 其他 x[n] = \begin{cases} 1, & 0 \leqslant n \leqslant N-1 \\ 0, & \text{其他} \end{cases} x[n]={1,0,0nN1其他
  • 频域信号
    X ( e j ω ) = ∑ n = 0 N − 1 e − j ω n = e − j N − 1 2 ω sin ⁡ ( N ω 2 ) sin ⁡ ( ω 2 ) X({\rm e}^{{\rm j}\omega}) = \sum_{n=0}^{N-1} {\rm e}^{-{\rm j}\omega n} = {\rm e}^{-{\rm j}\frac{N-1}{2}\omega} \frac{\sin\left(\frac{N\omega}{2}\right)}{\sin\left(\frac{\omega}{2}\right)} X(ejω)=n=0N1ejωn=ej2N1ωsin(2ω)sin(2Nω)
单位冲激序列与常数函数
  • 时域信号
    x [ n ] = δ [ n ] x[n] = \delta[n] x[n]=δ[n]
  • 频域信号
    X ( e j ω ) = 1 X({\rm e}^{{\rm j}\omega}) = 1 X(ejω)=1
复指数序列与冲激函数
  • 时域信号
    x [ n ] = e j ω 0 n x[n] = {\rm e}^{{\rm j}\omega_0 n} x[n]=ejω0n
  • 频域信号
    X ( e j ω ) = 2 π ∑ k = − ∞ + ∞ δ ( ω − ω 0 − 2 π k ) X({\rm e}^{{\rm j}\omega}) = 2\pi \sum_{k=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi k) X(ejω)=2πk=+δ(ωω02πk)
单位阶跃序列与指数衰减函数
  • 时域信号
    x [ n ] = u [ n ] = { 1 , n ≥ 0 0 , n < 0 x[n] = u[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases} x[n]=u[n]={1,0,n0n<0
  • 频域信号
    X ( e j ω ) = 1 1 − e − j ω X({\rm e}^{{\rm j}\omega}) = \frac{1}{1 - {\rm e}^{-{\rm j}\omega}} X(ejω)=1ejω1
正弦序列
  • 时域信号
    x [ n ] = sin ⁡ ( ω 0 n ) x[n] = \sin(\omega_0 n) x[n]=sin(ω0n)
  • 频域信号
    X ( e j ω ) = j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] X({\rm e}^{{\rm j}\omega}) = {\rm j}\pi \left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)\right] X(ejω)=jπ[δ(ω+ω0)δ(ωω0)]
    在这里插入图片描述
余弦序列
  • 时域信号
    x [ n ] = cos ⁡ ( ω 0 n ) x[n] = \cos(\omega_0 n) x[n]=cos(ω0n)
  • 频域信号
    X ( e j ω ) = π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] X({\rm e}^{{\rm j}\omega}) = \pi \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)\right] X(ejω)=π[δ(ω+ω0)+δ(ωω0)]

这些变换对在信号处理中非常重要,它们揭示了信号在时域和频域之间的对应关系,有助于分析和设计各种信号处理系统。


http://www.mrgr.cn/news/95860.html

相关文章:

  • Langchain中的表格解析:RAG 和表格的爱恨情仇
  • 深入 SVG:矢量图形、滤镜与动态交互开发指南
  • Python进阶编程总结
  • 定长内存池原理及实现
  • 【Linux知识】RPM软件包安装命令行详细说明
  • MoManipVLA:将视觉-语言-动作模型迁移到通用移动操作
  • Rust从入门到精通之精通篇:21.高级内存管理
  • Tasklet_等待队列_工作队列
  • ngx_http_core_location
  • SVN常用命令
  • 团体协作项目总结Git
  • 基于Ebay拍卖网站成交价格的影响因素分析
  • python工厂模式
  • 2025前端面试题(vue、react、uniapp、微信小程序、JS、CSS、其他)
  • 吾爱出品,文件分类助手,高效管理您的 PC 资源库
  • 内核编程十二:打印task_struct中的数据
  • 单片机和微控制器知识汇总——《器件手册--单片机、数字信号处理器和可编程逻辑器件》
  • Mycat安装验证流程整理
  • 【Pandas】pandas Series to_csv
  • Vue 3 组件高级语法