当前位置: 首页 > news >正文

无人机避障——XTDrone中运行VINS-Fusion+Ego-planner进行路径规划

本文聚焦于无人机避障技术领域的经典方案,重点探讨视觉双目VINS-Fusion建图与Ego-planner路径规划的组合应用。通过视觉双目VINS-Fusion实现精准的环境建图与自身定位,结合Ego-planner的高效路径规划能力,使无人机在复杂环境中实现自主避障飞行。基于XTDrone平台,采用PX4固件和Mavros协议进行仿真测试,验证了该技术方案的可行性和有效性,展示了其在实际应用中的潜力和优势。

参考链接:

视觉惯性里程计(VIO) · 语雀VINS-Mono编译首先参考这里配置依赖,然后编译c...https://www.yuque.com/xtdrone/manual_cn/vio#luwyy

VINS-Fusion仿真

遇到报错问题:

基本报错参考链接:

Ubuntu20.04运行Vins-fusion_ubuntu20.04 vins-fussion-CSDN博客

原文中:

在报错的项目的CMakeList里的
set(CMAKE_CXX_FLAGS “-std=c++11”)
改成
set(CMAKE_CXX_STANDARD 14)

实际上:

Vins-fusion中的文件夹下的功能包的CMake.list都需要进行以上修改。

原文中:

但在Opencv4中,CV_LOAD_IMAGE_GRAYSCALE找不到,经过查看Opencv的API可知,CV_LOAD_IMAGE_GRAYSCALE已改为 IMREAD_GRAYSCALE,修改即可。

实际上:

将CV_LOAD_IMAGE_GRAYSCALE改为cv::IMREAD_GRAYSCALE

 其他报错:

 /usr/bin/ld: /usr/local/lib/libgflags.a(gflags.cc.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `_ZN3fLS20StringFlagDestructorD1Ev' which may bind externally can not be used when making a shared object; recompile with -fPIC
/usr/local/lib/libgflags.a(gflags.cc.o): in function `_GLOBAL__sub_I__ZN3fLS14FLAGS_flagfileB5cxx11E':
gflags.cc:(.text.startup+0x60): 危险的重寻址: unsupported relocation
/usr/bin/ld: /usr/local/lib/libgflags.a(gflags.cc.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `_ZN22gflags_mutex_namespace5MutexD1Ev' which may bind externally can not be used when making a shared object; recompile with -fPIC
gflags.cc:(.text.startup+0x280): 危险的重寻址: unsupported relocation
/usr/bin/ld: /usr/local/lib/libgflags.a(gflags.cc.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `_ZNSt6vectorINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEESaIS5_EED1Ev' which may bind externally can not be used when making a shared object; recompile with -fPIC
gflags.cc:(.text.startup+0x2fc): 危险的重寻址: unsupported relocation
/usr/bin/ld: /usr/local/lib/libgflags.a(gflags_reporting.cc.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `_ZN3fLS20StringFlagDestructorD1Ev' which may bind externally can not be used when making a shared object; recompile with -fPIC
/usr/local/lib/libgflags.a(gflags_reporting.cc.o): in function `_GLOBAL__sub_I__ZN3fLB10FLAGS_helpE':
gflags_reporting.cc:(.text.startup+0x60): 危险的重寻址: unsupported relocation
/usr/bin/ld: /usr/local/lib/libgflags.a(gflags_completions.cc.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `_ZN3fLS20StringFlagDestructorD1Ev' which may bind externally can not be used when making a shared object; recompile with -fPIC
/usr/local/lib/libgflags.a(gflags_completions.cc.o): in function `_GLOBAL__sub_I__ZN3fLS25FLAGS_tab_completion_wordB5cxx11E':
gflags_completions.cc:(.text.startup+0xa0): 危险的重寻址: unsupported relocation
collect2: error: ld returned 1 exit status
[ 43%] Generating EusLisp code from gazebo_msgs/SetLinkProperties.srv
make[2]: *** [VINS-Fusion/camera_models/CMakeFiles/camera_models.dir/build.make:352:/home/nvidia/catkin_ws/devel/lib/libcamera_models.so] 错误 1
make[1]: *** [CMakeFiles/Makefile2:916:VINS-Fusion/camera_models/CMakeFiles/camera_models.dir/all] 错误 2
make[1]: *** 正在等待未完成的任务....

解决:

根本原因:

错误信息中的 relocation R_AARCH64_ADR_PREL_PG_HI21 表明在生成动态库(.so)时,链接了未启用 -fPIC 的静态库 libgflags.a

ARM架构(如AArch64)要求动态库的所有依赖库必须编译为位置无关代码(PIC),否则无法正确处理地址重定位

libgflags.a 是静态库且未启用 -fPIC,导致其代码段包含绝对地址,无法被动态库共享使用


解决方案
1. ​重新编译gflags并强制启用-fPIC

步骤:​

# 卸载旧版本gflags
sudo rm -rf /usr/local/lib/libgflags* /usr/local/include/gflags# 下载源码并编译
git clone https://github.com/gflags/gflags.git
cd gflags
mkdir build && cd build# 通过CMake启用位置无关代码并生成动态库
cmake .. -DBUILD_SHARED_LIBS=ON -DGFLAGS_NAMESPACE=google -DCMAKE_INSTALL_PREFIX=/usr/local
make -j$(nproc)
sudo make install
2. ​验证gflags安装

检查新生成的库文件是否为动态库:

ls /usr/local/lib | grep libgflags
# 正确输出应包含 libgflags.so,而非 libgflags.a
3. ​更新动态库缓存
sudo ldconfig  # 刷新动态库路径
4. ​修改项目CMake配置

camera_modelsCMakeLists.txt 中,确保链接到动态库:

# 添加以下内容以强制链接动态库
find_package(gflags REQUIRED)
target_link_libraries(camera_models PRIVATE gflags_shared)  # 使用动态库目标名
 5. 以下是更改的CMakeLists.txt文件:
cmake_minimum_required(VERSION 2.8.3)
project(camera_models)set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -fPIC")find_package(catkin REQUIRED COMPONENTSroscppstd_msgs)find_package(Boost REQUIRED COMPONENTS filesystem program_options system)
include_directories(${Boost_INCLUDE_DIRS})find_package(OpenCV REQUIRED)# set(EIGEN_INCLUDE_DIR "/usr/local/include/eigen3")
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})
find_package(gflags REQUIRED) # 第一条加在这里catkin_package(INCLUDE_DIRS includeLIBRARIES camera_modelsCATKIN_DEPENDS roscpp std_msgs
#    DEPENDS system_lib)include_directories(${catkin_INCLUDE_DIRS})include_directories("include")add_executable(Calibrations src/intrinsic_calib.ccsrc/chessboard/Chessboard.ccsrc/calib/CameraCalibration.ccsrc/camera_models/Camera.ccsrc/camera_models/CameraFactory.ccsrc/camera_models/CostFunctionFactory.ccsrc/camera_models/PinholeCamera.ccsrc/camera_models/PinholeFullCamera.ccsrc/camera_models/CataCamera.ccsrc/camera_models/EquidistantCamera.ccsrc/camera_models/ScaramuzzaCamera.ccsrc/sparse_graph/Transform.ccsrc/gpl/gpl.ccsrc/gpl/EigenQuaternionParameterization.cc)add_library(camera_modelssrc/chessboard/Chessboard.ccsrc/calib/CameraCalibration.ccsrc/camera_models/Camera.ccsrc/camera_models/CameraFactory.ccsrc/camera_models/CostFunctionFactory.ccsrc/camera_models/PinholeCamera.ccsrc/camera_models/PinholeFullCamera.ccsrc/camera_models/CataCamera.ccsrc/camera_models/EquidistantCamera.ccsrc/camera_models/ScaramuzzaCamera.ccsrc/sparse_graph/Transform.ccsrc/gpl/gpl.ccsrc/gpl/EigenQuaternionParameterization.cc)target_link_libraries(Calibrations ${Boost_LIBRARIES} ${OpenCV_LIBS} ${CERES_LIBRARIES})
target_link_libraries(camera_models ${Boost_LIBRARIES} ${OpenCV_LIBS} ${CERES_LIBRARIES})
target_link_libraries(camera_models PRIVATE gflags_shared)# 第二条加在这里

 编译成功:

PX4飞控EKF配置:

修改定位方式:

打开文件:

gedit ~/PX4_Firmware/ROMFS/px4fmu_common/init.d-posix/rcS

找到GPS、气压计、视觉选择的部分,我们用的是VINS-Fusion双目视觉所以需要修改

修改前:

# GPS used
param set EKF2_AID_MASK 1
# Vision used and GPS denied
#param set EKF2_AID_MASK 24# Barometer used for hight measurement
param set EKF2_HGT_MODE 0
# Barometer denied and vision used for hight measurement
#param set EKF2_HGT_MODE 3

 修改后:

# GPS used
#param set EKF2_AID_MASK 1
# Vision used and GPS denied
param set EKF2_AID_MASK 24
# Barometer used for hight measurement
#param set EKF2_HGT_MODE 0
# Barometer denied and vision used for hight measurement
param set EKF2_HGT_MODE 3

使修改生效:

rm ~/.ros/eeprom/parameters*
rm -rf ~/.ros/sitl*

 运行Vins-Fusion:

roslaunch px4 indoor1.launchcd ~/catkin_ws
bash scripts/xtdrone_run_vio.shcd ~/XTDrone/sensing/slam/vio
python vins_transfer.py iris 0cd ~/XTDrone/communication
python multirotor_communication.py iris 0 cd ~/XTDrone/control/keyboard
python multirotor_keyboard_control.py iris 1 vel

运行视频:

Vins_Fusion

Ego-planner三维路径规划仿真

编译Ego-planner报错:

报错1:

解决1:

问题核心是 ​CMake无法找到PCL(Point Cloud Library)的配置文件。

安装PCL核心开发组件:

sudo apt-get install libpcl-dev pcl-tools

报错2:

解决2:

pcl_conversions.h 属于ROS的 pcl_conversions 包,需单独安装:

# 安装ROS版本的PCL转换工具包
sudo apt-get install ros-noetic-pcl-conversions ros-noetic-pcl-ros

编译成功

 代码运行整合:

#整理的运行代码
#启动仿真程序
roslaunch px4 indoor1.launch#启动Vins-Fusion
cd ~/catkin_ws
bash scripts/xtdrone_run_vio.sh#由于VINS-Fusion发布的是Odometry类型的话题,要将其对应转为PX4所需的话题
cd ~/XTDrone/sensing/slam/vio
python vins_transfer.py iris 0#然后建立通信,键盘控制起飞即可
cd ~/XTDrone/communication
python multirotor_communication.py iris 0 cd ~/XTDrone/control/keyboard
python multirotor_keyboard_control.py iris 1 vel#转换相机位姿的坐标系方向
cd ~/XTDrone/motion_planning/3d
python ego_transfer.py iris 0#启动rviz
cd ~/XTDrone/motion_planning/3d
rviz -d ego_rviz.rviz#启动ego_planner
roslaunch ego_planner single_uav.launch 

按顺序运行代码:

 运行结果:

VINS-fusion+Ego-planner

 


http://www.mrgr.cn/news/93986.html

相关文章:

  • 【愚公系列】《AI Agent技术、应用与商业》003-Al Agent 的分类方式
  • 【NexLM 开源系列】如何封装多个大模型 API 调用
  • 在线json转ArkTs-Harmonyos
  • π0源码剖析——从π0模型架构的实现(如何基于PaLI-Gemma和扩散策略去噪生成动作),到基于C/S架构下的模型训练与部署
  • Smart contract -- 自毁合约
  • 忘记dedecms后台超级管理员账号和密码的解决方案
  • ROS实践(二)构建Gazebo机器人模型文件urdf
  • 大语言模型 (LLM) 基础知识
  • Java 大视界 -- Java 大数据在智慧农业农产品质量追溯与品牌建设中的应用(124)
  • 自监督预训练算法核心原理
  • 【论文阅读】VAD: Vectorized Scene Representation for Efficient Autonomous Driving
  • 蓝桥杯备赛日记【1】(c++赛道)
  • MySQL的安装及配置
  • docker私有仓库配置
  • delphi 正则提取html中的内容
  • Hugging Face的Transformers核心模块:Pipelines(参数说明,各种模型类型调用案例)
  • 『PostgreSQL』 Ubuntu 系统下PG15的安装与 PGVector 配置指南
  • 01.02、判定是否互为字符重排
  • Word 小黑第2套
  • 仅仅使用pytorch来手撕transformer架构(2):多头注意力MultiHeadAttention类的实现和向前传播