数仓搭建(hive):DWS层(服务数据层)
DWS层示例: 搭建日主题宽表
需求


步骤
CREATE TABLE yp_dws.dws_sale_daycount(
--维度
city_id string COMMENT '城市id',
city_name string COMMENT '城市name',
trade_area_id string COMMENT '商圈id',
trade_area_name string COMMENT '商圈名称',
store_id string COMMENT '店铺的id',
store_name string COMMENT '店铺名称',
brand_id string COMMENT '品牌id',
brand_name string COMMENT '品牌名称',
max_class_id string COMMENT '商品大类id',
max_class_name string COMMENT '大类名称',
mid_class_id string COMMENT '中类id',
mid_class_name string COMMENT '中类名称',
min_class_id string COMMENT '小类id',
min_class_name string COMMENT '小类名称',
group_type string COMMENT '分组类型:store,trade_area,city,brand,
min_class,mid_class,max_class,all',
-- =======日统计=======
sale_amt DECIMAL(38,2) COMMENT '销售收入',
plat_amt DECIMAL(38,2) COMMENT '平台收入',
deliver_sale_amt DECIMAL(38,2) COMMENT '配送成交额',
mini_app_sale_amt DECIMAL(38,2) COMMENT '小程序成交额',
android_sale_amt DECIMAL(38,2) COMMENT '安卓APP成交额',
ios_sale_amt DECIMAL(38,2) COMMENT '苹果APP成交额',
pcweb_sale_amt DECIMAL(38,2) COMMENT 'PC商城成交额',
order_cnt BIGINT COMMENT '成交单量',
eva_order_cnt BIGINT COMMENT '参评单量comment=>cmt',
bad_eva_order_cnt BIGINT COMMENT '差评单量negtive-comment=>ncmt',
deliver_order_cnt BIGINT COMMENT '配送单量',
refund_order_cnt BIGINT COMMENT '退款单量',
miniapp_order_cnt BIGINT COMMENT '小程序成交单量',
android_order_cnt BIGINT COMMENT '安卓APP订单量',
ios_order_cnt BIGINT COMMENT '苹果APP订单量',
pcweb_order_cnt BIGINT COMMENT 'PC商城成交单量'
)
COMMENT '销售主题日统计宽表'
PARTITIONED BY(dt STRING)
ROW format delimited fields terminated BY '\t'
stored AS orc tblproperties ('orc.compress' = 'SNAPPY');
set hive.exec.mode.local.auto=true;
WITH TEMP AS (SELECT-- 先抽取维度字段O.dt-- 城市,S.city_id,S.city_name-- 商圈,S.trade_area_id,S.trade_area_name-- 店铺,S.id,S.store_name-- 品牌,G.brand_id,G.brand_name-- 大类,G.max_class_id,G.max_class_name-- 中,G.mid_class_id,G.mid_class_name-- 小,G.min_class_id,G.min_class_name-- 抽取字段字段-- 订单量指标,O.order_id-- 金额指标,O.order_amount,O.goods_price,O.plat_fee,O.settlement_amount,O.dispatcher_money,O.order_from,O.evaluation_state,O.geval_scores,O.is_delivery -- 是否配送,O.refund_id -- 退款单号-- 去重,ROW_NUMBER()OVER(PARTITION BY O.order_id ORDER BY order_id) RNFROM DWB.DWB_ORDER_DETAIL1 OLEFT JOIN DWB.DWB_SHOP_DETAIL SON O.store_id = S.idLEFT JOIN DWB.dwb_goods_detail GON G.store_id = S.id
)
SELECTT.city_id,T.city_name,T.trade_area_id,T.trade_area_name,T.ID AS STORE_ID,T.store_name,T.brand_id,T.brand_name,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name,T.min_class_id,T.min_class_name,(CASE WHEN T.ID IS NOT NULLTHEN '店铺'WHEN T.trade_area_id IS NOT NULLTHEN '商圈'WHEN T.city_id IS NOT NULLTHEN '城市'WHEN T.min_class_id IS NOT NULLTHEN '小类'WHEN T.mid_class_id IS NOT NULLTHEN '中类'WHEN T.max_class_id IS NOT NULLTHEN '大类'WHEN T.brand_id IS NOT NULLTHEN '品牌'ELSE '日期'END) AS GROUP_TYPE,SUM(CASE WHEN RN = 1 THEN T.order_amount END) AS SALE_AMT,SUM(CASE WHEN RN = 1 THEN T.plat_fee END) AS PLAT_AMT,SUM(CASE WHEN RN = 1 AND T.is_delivery = 1 THEN T.order_amount END) AS DELIVER_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'miniapp' THEN T.order_amount END) AS MINI_APP_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'android' THEN T.order_amount END) AS android_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'ios' THEN T.order_amount END) AS ios_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'pcweb' THEN T.order_amount END) AS PCWEB_SALE_AMT,COUNT(CASE WHEN RN = 1 THEN T.order_id END ) AS ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.evaluation_state = 1 THEN 1 END) AS EVA_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.geval_scores < 3 THEN 1 END) AS BAD_EVA_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.is_delivery = 1 THEN 1 END) AS DELIVER_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.refund_id IS NOT NULL THEN 1 END) AS REFUND_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'miniapp' THEN 1 END) AS MINI_APP_SALE_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'android' THEN 1 END) AS android_SALE_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'ios' THEN 1 END) AS ios_SALE_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'pcweb' THEN 1 END) AS PCWEB_SALE_CNT,T.dtFROM TEMP T
GROUP BYT.dt,T.city_id,T.city_name,T.trade_area_id,T.trade_area_name,T.id,T.store_name,T.brand_id,T.brand_name,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name,T.min_class_id,T.min_class_name
GROUPING SETS ((T.dt),(T.dt,T.city_id,T.city_name),(T.dt,T.city_id,T.city_name,T.trade_area_id,T.trade_area_name),(T.dt,T.city_id,T.city_name,T.trade_area_id,T.trade_area_name,T.id,T.store_name),(T.dt,T.brand_id,T.brand_name),(T.dt,T.max_class_id,T.max_class_name),(T.dt,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name),(T.dt,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name,T.min_class_id,T.min_class_name)
);
在hive中查询数据很慢
方法一:
set hive.exec.mode.local.auto=true;
方法二: Hue上执行
插入数据
查看表结构
要插入的目标表是分区表 >> 开启动态插入模式/非严格模式
在hive中,insert into 要紧跟select
set hive.exec.mode.local.auto=true; -- 本地模式
SET hive.exec.dynamic.partition = true; -- 动态分区
SET hive.exec.dynamic.partition.mode=nonstrict; -- 非严格模式
WITH TEMP AS (SELECT-- 先抽取维度字段O.dt-- 城市,S.city_id,S.city_name-- 商圈,S.trade_area_id,S.trade_area_name-- 店铺,S.id,S.store_name-- 品牌,G.brand_id,G.brand_name-- 大类,G.max_class_id,G.max_class_name-- 中,G.mid_class_id,G.mid_class_name-- 小,G.min_class_id,G.min_class_name-- 抽取字段字段-- 订单量指标,O.order_id-- 金额指标,O.order_amount,O.goods_price,O.plat_fee,O.settlement_amount,O.dispatcher_money,O.order_from,O.evaluation_state,O.geval_scores,O.is_delivery -- 是否配送,O.refund_id -- 退款单号-- 去重,ROW_NUMBER()OVER(PARTITION BY O.order_id ORDER BY order_id) RNFROM DWB.DWB_ORDER_DETAIL1 OLEFT JOIN DWB.DWB_SHOP_DETAIL SON O.store_id = S.idLEFT JOIN DWB.dwb_goods_detail GON G.store_id = S.id
)insert into dws.dws_sale_daycount(dt)SELECTT.city_id,T.city_name,T.trade_area_id,T.trade_area_name,T.ID AS STORE_ID,T.store_name,T.brand_id,T.brand_name,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name,T.min_class_id,T.min_class_name,(CASE WHEN T.ID IS NOT NULLTHEN '店铺'WHEN T.trade_area_id IS NOT NULLTHEN '商圈'WHEN T.city_id IS NOT NULLTHEN '城市'WHEN T.min_class_id IS NOT NULLTHEN '小类'WHEN T.mid_class_id IS NOT NULLTHEN '中类'WHEN T.max_class_id IS NOT NULLTHEN '大类'WHEN T.brand_id IS NOT NULLTHEN '品牌'ELSE '日期'END) AS GROUP_TYPE,SUM(CASE WHEN RN = 1 THEN T.order_amount END) AS SALE_AMT,SUM(CASE WHEN RN = 1 THEN T.plat_fee END) AS PLAT_AMT,SUM(CASE WHEN RN = 1 AND T.is_delivery = 1 THEN T.order_amount END) AS DELIVER_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'miniapp' THEN T.order_amount END) AS MINI_APP_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'android' THEN T.order_amount END) AS android_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'ios' THEN T.order_amount END) AS ios_SALE_AMT,SUM(CASE WHEN RN = 1 AND T.order_from = 'pcweb' THEN T.order_amount END) AS PCWEB_SALE_AMT,COUNT(CASE WHEN RN = 1 THEN T.order_id END ) AS ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.evaluation_state = 1 THEN 1 END) AS EVA_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.geval_scores < 3 THEN 1 END) AS BAD_EVA_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.is_delivery = 1 THEN 1 END) AS DELIVER_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.refund_id IS NOT NULL THEN 1 END) AS REFUND_ORDER_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'miniapp' THEN 1 END) AS MINI_APP_SALE_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'android' THEN 1 END) AS android_SALE_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'ios' THEN 1 END) AS ios_SALE_CNT,COUNT(CASE WHEN RN = 1 AND T.order_from = 'pcweb' THEN 1 END) AS PCWEB_SALE_CNT,T.dtFROM TEMP T
GROUP BYT.dt,T.city_id,T.city_name,T.trade_area_id,T.trade_area_name,T.id,T.store_name,T.brand_id,T.brand_name,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name,T.min_class_id,T.min_class_name
GROUPING SETS ((T.dt),(T.dt,T.city_id,T.city_name),(T.dt,T.city_id,T.city_name,T.trade_area_id,T.trade_area_name),(T.dt,T.city_id,T.city_name,T.trade_area_id,T.trade_area_name,T.id,T.store_name),(T.dt,T.brand_id,T.brand_name),(T.dt,T.max_class_id,T.max_class_name),(T.dt,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name),(T.dt,T.max_class_id,T.max_class_name,T.mid_class_id,T.mid_class_name,T.min_class_id,T.min_class_name)
);
查询数据sql分析
数据来源>>DWB层的数据表
下面分析维度/指标需要哪些数据信息(字段)以及来自哪些表
维度:
日期(dt)>>DWB_ORDER_DETAIL1
城市(city_id, city_name) >>DWB_SHOP_DETAIL
商圈(trade_area_id, trade_area_name)>>DWB_SHOP_DETAIL
店铺(id, store_name)>>DWB_SHOP_DETAIL
品牌(brand_id, brand_name)>>dwb_goods_detail
大类(max_class_id, max_class_name)>>dwb_goods_detail
中类(mid_class_id, mid_class_name)>> dwb_goods_detail
小类(min_class_id, min_class_name) >>dwb_goods_detail
指标
订单量(order_id)>>DWB_ORDER_DETAIL1
金额(order_amount, goods_price, plat_fee, settlement_amount, dispatcher_money, order_from, evaluation_state, geval_scores, is_delivery, refund_id)>>DWB_ORDER_DETAIL1
维度/指标的数据来源于3张表, 且订单表(DWB_ORDER_DETAIL1)最多>>表连接时把订单表作为主表
使用with as 做一个公共表达式先把指标/维度相关的字段数据抽取出来>>再用select 语句对数据进行分组汇总>>插入数据
抽取数据注意: 订单表的重复数据>>去重>>ROW_NUMBER()
重复数据原因:
订单表是一个宽表, 由多张事实表连接到一起, 容易产生重复数据
比如一张订单里面有多家商铺的商品,那么就会产生多条同样的订单号
select 语句的字段及数据类型, 注意和目标表的字段相对应
目标表
目标表的group_type字段,用case when 实现
字段信息: group_type string COMMENT '分组类型:store,trade_area,city,brand,
min_class,mid_class,max_class,all',
注意: '分组类型'字段在用case when进行条件判断时, 只有false不满足条件才进行下一步判断>>先判断小维度,再到大维度>>减少sql 量
比如: 在维度中, 店铺 < 商圈 < 城市 ; 小类 < 中类 < 大类 ;
目标表的指标字段
select 语句中的指标数据汇总实现
(目标表)收入/成交额>>sum() 汇总
(目标表)单量>>count() 汇总
注意: case when 去重/过滤条件
目标表的分区字段 dt >>T.dt