当前位置: 首页 > news >正文

自动驾驶---如何打造一款属于自己的自动驾驶系统

        在笔者的专栏《自动驾驶Planning决策规划》中,主要讲解了行车的相关知识,从Routing,到Behavior Planning,再到Motion Planning,以及最后的Control,笔者都做了相关介绍,其中主要包括算法在量产上的应用,这是笔者与其他博主非常不同的一点,重点阐述自动驾驶量产相关的算法

        在之前的专栏中由于篇幅的限制,并不能逐篇去扣算法,扣代码。只是希望读者朋友们对整个自动驾驶系统有一个深刻的了解,同时知道目前头部智驾的车企在各个模块都用了哪些算法,对于社招找工作的同学、亦或是想转行到自动驾驶行业的同学或者应届毕业生都是非常有帮助的。

        即使目前端到端大模型也逐步量产(笔者也已经同步在自己的博客中更新相关模型的应用),其实除了头部的几家公司,很多智驾公司仍然在用传统的规控算法。然后,读者朋友们也不用慌张,传统的算法也并没有消亡,在端到端的背后依然有其用武之地。

        即使在之前的博客中,笔者分别写了两篇开源自动驾驶仿真系统的安装使用教程,一个是百度的Apollo,另一个是Autoware.universe:《Ubuntu 20.04 安装 Apollo 8.0&vscode仿真调试》,《Ubuntu 20.04 安装 Autoware.universe自动驾驶仿真工具》。虽然这两个教程获得了读者们的喜爱,但笔者长时间的使用体验感受,两者也有很多不便之处:Apollo由于其算法比较老旧,接口相对复杂,开发新算法非常不方便,笔者在开发中经常使用的是其中的某些common库及部分算法的移植;Autoware.universe的仿真界面虽然比较友善,但同样地,如果使用新算法,改起来也有些麻烦。

        笔者的下一个实践系列就是带领读者朋友一起打造属于自己的自动驾驶系统,包括规控算法(Routing,Prediction、Behavior Planning,Motion Planning,以及Control)的开发,仿真,调试等,基本会按照笔者专栏《自动驾驶Planning决策规划》中算法的顺序完成(可能会舍弃一些老旧的算法),效果如上图所示,显示的元素包括routing的路径信息,车道边界信息,动静态车辆信息,参考线没有暂时没有显示(增加msg即可),局部规划的轨迹信息,可以完成规控模块的闭环仿真。

        整个开发、仿真流程可全部由自己完成,感知可采用开源数据包(ROS通信需要对好相关协议),采集的传感器信息进行感知的调试,也可自己模拟相关感知上游信号供规控使用。总体通信框架基于ROS,不依赖于Rviz,Gazebo等插件,非常轻量级、简洁化的一套系统。

        感兴趣的读者朋友可以关注并私信我。

        感兴趣的读者朋友可以关注并私信我。

        感兴趣的读者朋友可以关注并私信我。

 

 

 


http://www.mrgr.cn/news/90948.html

相关文章:

  • 算法19(力扣244)反转字符串
  • aws(学习笔记第二十八课) aws eks使用练习(hands on)
  • RAMinit 程序编译运行考古记录
  • 【快速入门】Unity 常用组件(功能块)
  • 【异或数列——博弈论】
  • 【大模型】阿里云百炼平台对接DeepSeek-R1大模型使用详解
  • Ubuntu 22.04 Desktop企业级基础配置操作指南
  • 天芒传奇Ⅱ·前传-天芒的使用
  • 基于HTML5 Canvas 和 JavaScript 实现的烟花动画效果
  • UI自动化测试的优缺点?
  • 2025年二级建造师报名流程图解
  • 【Unity Shader编程】之GPU编程前言
  • 【数据结构】(8) 二叉树
  • 把 DeepSeek1.5b 部署在显卡小于4G的电脑上
  • GPU并行计算的深度学习pyTorch环境搭建
  • RAII(Resource Acquisition Is Initialization)机制
  • Kotlin 2.1.0 入门教程(十七)接口
  • DeepSeek预测2025目标检测算法Top 5:谁将主导下一代视觉感知?
  • 多媒体软件安全与授权新范例,用 CodeMeter 实现安全、高效的软件许可管理
  • 机器学习-1:线性回归