当前位置: 首页 > news >正文

Aitken 逐次线性插值

Aitken 逐次线性插值

用 Lagrange 插值多项式 L n ( x ) L_n(x) Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。

I i 1 , i 2 , . . . , i n ( x ) I_{{i_1},{i_2},...,i_n(x)} Ii1,i2,...,in(x)表示函数 f ( x ) f(x) f(x)关于节点 x i 1 , x i 2 , ⋅ ⋅ ⋅ , x i n x_{i_1},x_{i_2},\cdotp\cdotp\cdotp,x_{i_n} xi1,xi2,⋅⋅⋅,xin n − 1 n-1 n1 次插值多项式, I i k ( x ) I_{i_k}(x) Iik(x)是零次多项式,记 I i k ( x ) = f ( x i k ) , i 1 , i 2 , ⋅ ⋅ ⋅ , i n I_{i_k(x)}=f(x_{i_k}),i_1,i_2,\cdotp\cdotp\cdotp,i_n Iik(x)=f(xik),i1,i2,⋅⋅⋅,in 均为非负整数。

一般情况,两个k 次插值多项式可通过线性插值得到 k + 1 k+1 k+1次插值多项式
I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,,k,l(x)=I0,1,,k(x)+xlxkI0,1,,k1,l(x)I0,1,,k(x)(xxk)

这是关于节点 x 0 , ⋅ ⋅ ⋅ , x k , x l x_0,\cdotp\cdotp\cdotp,x_k,x_l x0,⋅⋅⋅,xk,xl的插值多项式。

I 0 , 1 , ⋯ , k , l ( x i ) = I 0 , 1 , ⋯ , k ( x i ) = f ( x i ) I_{0,1,\cdots,k,l}(x_i)=I_{0,1,\cdots,k}(x_i)=f(x_i) I0,1,,k,l(xi)=I0,1,,k(xi)=f(xi)
对于 i = 0 , 1 , ⋅ ⋅ ⋅ , k − 1 i=0,1,\cdotp\cdotp\cdotp,k-1 i=0,1,⋅⋅⋅,k1 成立.当 x = x k x=x_k x=xk 时,有
I 0 , 1 , ⋯ , k , l ( x k ) = I 0 , 1 , ⋯ , k ( x k ) = f ( x k ) , I_{0,1,\cdots,k,l}(x_k)=I_{0,1,\cdots,k}(x_k)=f(x_k)\:, I0,1,,k,l(xk)=I0,1,,k(xk)=f(xk),

x = x l x=x_l x=xl时,有

I 0 , 1 , ⋯ , k , l ( x l ) = I 0 , 1 , ⋯ , k ( x l ) + f ( x l ) − I 0 , 1 , ⋯ , k ( x l ) x l − x k ( x l − x k ) = f ( x l ) . I_{0,1,\cdots,k,l}(x_l)=I_{0,1,\cdots,k}(x_l)+\frac{f(x_l)-I_{0,1,\cdots,k}(x_l)}{x_l-x_k}(x_l-x_k)=f(x_l). I0,1,,k,l(xl)=I0,1,,k(xl)+xlxkf(xl)I0,1,,k(xl)(xlxk)=f(xl).

这说明插值多项式 I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,,k,l(x)=I0,1,,k(x)+xlxkI0,1,,k1,l(x)I0,1,,k(x)(xxk)满足插值条件,称其为 Aitken 逐次线性插值公式。


http://www.mrgr.cn/news/90158.html

相关文章:

  • Spring MVC异常处理:DefaultHandlerExceptionResolver的使用与实例
  • 【动态规划篇】:动态规划解决路径难题--思路,技巧与实例
  • [笔记.AI]Deepseek-R1 各参数版本的蒸馏模型对比
  • DeepSeek从入门到精通:全面掌握AI大模型的核心能力
  • Kafka中的KRaft算法
  • 视觉硬件选型和算法选择(CNN)
  • 【C语言】#define和typedef的区别
  • 本地部署DeepSeek Nodejs版
  • 2025年1月1日起,美国禁止在食品包装中使用PFAS+PFAS标准办理讲解
  • 【Pandas】pandas Series nunique
  • Python的
  • 大模型基本原理(二)——ChatGPT的工作原理
  • 嵌入式工程师面试准备(客观题准备)
  • 示例代码:C# MQTTS双向认证(客户端)(服务器EMQX)
  • 【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面
  • Mac(m1)本地部署deepseek-R1模型
  • QT实现多线程的方法
  • 使用EVE-NG-锐捷实现单臂路由
  • openbmc web/redfish到底层设计(持续更新...)
  • Spring AI 介绍
  • 【操作系统】Linux基本命令
  • Redis | 十大数据类型
  • Ubuntu 下 nginx-1.24.0 源码分析 ngx_tm_t 类型
  • 旋转位置编码(RoPE)讲解和代码实现
  • vue动态table 动态表头数据+动态列表数据
  • iOS主要知识点梳理回顾-3-运行时