List ---- 模拟实现LIST功能的发现
目录
- list
- list概念
- list 中的迭代器
- list迭代器知识
- const迭代器写法
- list访问自定义类型
- 附录代码
list
list概念
- list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
- list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向
其前一个元素和后一个元素。- list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高
效。- 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率
更好。- 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list
的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间
开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这
可能是一个重要的因素)
list 中的迭代器
有兴趣的可以直接跳转附录代码中,里面几乎涵盖了所有的问题答案.
list迭代器知识
迭代器原理就是对原生指针的封装,帮助我们更好的使用指针来对节点的内容进行访问。
迭代器目前学习的进度来看是分成普通迭代器和const迭代器。在对list的模拟实现过程中发现了许多新的迭代器知识点。
const迭代器写法
由于对迭代器封装后的代码重命名为:typedef __list_iterator<T > iterator;
所以下意识会认为const迭代器应该是这个样子的://typedef __list_const_iterator<T> const_iterator;
实际上这是有问题的!
因为const迭代器修饰的应该节点内部的数据不可以被修改,而迭代器本身是可以前后移动来遍历链表。 而
const_iterator
所表达的意思是T* const
,但是我们想要的是const T*
。 这两者的区别便是前一个T* const
可以修改节点内部数据信息,但因为不可以修改地址所以不能遍历链表,,而后一个const T*
不可以修改数据信息,但是可以遍历链表。
要想办法实现const T*
!!!!
list中的const迭代器实际上是保证对信息不可修改,所以只需要对读取信息的操作赋予控制是否为const属性的操作,即为T* operator*()
确保在某些时刻是const属性。所以可以在模板上对其进行特殊化操作: template<class T, class Ref>
template<class T, class Ref>struct __list_iterator{typedef list_node<T> node;typedef __list_iterator<T, Ref> self;node* _node;__list_iterator(node* n):_node(n){}Ref operator*()//T* operator(){return _node->_data;}};template<class T>class list{typedef list_node<T> node;public:typedef __list_iterator<T, T&> iterator;//使用普通迭代器就更改Ref就好了typedef __list_iterator<T, const T&> const_iterator;
在需要const迭代器时候,传递const T&,而需要普通迭代器就直接传递T&,这样不仅解决的繁琐的复用问题,还能够满足使用。
list访问自定义类型
迭代器要么是原生指针,要么是自定义类型对原生指针的封装,在模拟指针的行为。
而访问自定义类型不能使用解引用操作,而是使用访问操作符->
,所以list库对访问自定义类型也做了对应的设置,即重载operator->
但是因为要访问自定义类型就一棒子大打死,就只能使用operator->
来进行访问,内部的函数大可以直接访问,而复用又太过于繁琐了,所以又新增了特殊的模板类,控制是访问自定义类型还是访问内部函数!
template<class T, class Ref, class Ptr>struct __list_iterator{typedef list_node<T> node;typedef __list_iterator<T, Ref, Ptr> self;node* _node;__list_iterator(node* n):_node(n){}Ptr operator->(){return &_node->_data;}template<class T>class list{typedef list_node<T> node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;}
struct AA{int _a1;int _a2;AA(int a1 = 0, int a2 = 0)//全缺省的默认构造:_a1(a1), _a2(a2){}};void test_list2(){list<AA> lt;lt.push_back(AA(1, 1));lt.push_back(AA(2, 2));lt.push_back(AA(3, 3));list<AA>::iterator it = lt.begin();while (it != lt.end()){cout << it->_a1 << "," << it->_a2 << " ";++it;}cout << endl;}
因此不仅仅可以访问是否为const属性的信息,还可以控制访问是否为自定义类型的参数
附录代码
#pragma once#include<iostream>
#include<assert.h>
using namespace std;
namespace lby
{template<class T>struct list_node //节点的类//struct默认为公有,不打算对内容进行限制就用struct{list_node<T>* _next;list_node<T>* _prev;T _data;list_node(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}};//迭代器要么是原生指针,要么是自定义类型对原生指针的封装,在模拟指针的行为template<class T, class Ref, class Ptr>//使用普通迭代器就更改Ref就好了struct __list_iterator//封装的是迭代器,而迭代器的本质是用一个类去封装这个 node*,即指针指向这个链表的头节点{typedef list_node<T> node;typedef __list_iterator<T, Ref, Ptr> self;node* _node;//注意节点的指针不属于迭代器,只是让迭代器封装之后的一系列操作,不支持释放,释放是链表的事情,迭代器只能使用节点,不能释放节点__list_iterator(node* n):_node(n){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(this);_node = _node->_prev;return tmp;}bool operator!=(const self& x)//传递的是迭代器中的x{return _node != x._node;}bool operator==(const self& x){return _node == x._node;}};/*template<class T>struct __list_const_iterator//封装的是迭代器,而迭代器的本质是用一个类去封装这个 node*,即指针指向这个链表的头节点{typedef list_node<T> node;typedef __list_const_iterator<T> self;node* _node;//注意节点的指针不属于迭代器,只是让迭代器封装之后的一系列操作,不支持释放,释放是链表的事情,迭代器只能使用节点,不能释放节点__list_const_iterator(node* n):_node(n){}const T& operator*()//控制整个返回值不可修改{return _node->_data;}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(this);_node = _node->_prev;return tmp;}bool operator!=(const self& x)//传递的是迭代器中的x{return _node != x._node;}bool operator==(const self& x){return _node == x._node;}};*/template<class T>class list{typedef list_node<T> node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;//typedef __list_const_iterator<T> const_iterator;//typedef const iterator const_itrator;//绝对不可以,这种方式const修饰的是地址 --> T* const,而不是const T*;iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);}//iterator begin() const//这里有个问题,既然是const指针,那就应该是常量,但是为什么你还能改变指向的位置?//{// return iterator(_head->_next);//因为const指针修饰的是*this,即this指针指向的内容,它指向的内容是_head这个的指针,// //即为修饰的是_head这个指针本身!也就是说_head本身不能被改变,它指向的内容是可以改变的// //但是与我们的预期不符,因为const迭代器他是只读操作,不允许改变内容,如果他内容是可以改变的,我为什么要使用const迭代器呢const迭代器与普通迭代器区别是:const迭代器本身是可以修改的(可以前后移动去访问),但是const迭代器指向的内容是不可以修改的--> 要const T*,不要T* const !//}//iterator end() const//{// return iterator(_head); //}const_iterator begin() const{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}void empty_init(){_head = new node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}template<class Iterator>list(Iterator first, Iterator last){empty_init();//先构造头节点while (first != last){push_back(*first);//push_back 的前提是有哨兵位的头节点,所以需要先构造头节点++first;}}void swap(list<T>& t){std::swap(_head, t._head);}list(const list<T>& lt)//lt2(lt1){/*empty_init();//正常写法for (auto e : lt){push_back(e);}*/empty_init();list<T> tmp(lt.begin(), lt.end());//借助模板类进行复制后交换swap(tmp);}//lt1 = lt3 list<T>& operator=(list<T> lt)//(list<T>& lt)不能引用传引用,因为会将原来的lt进行修改{swap(lt);return *this;}~list(){clear();delete _head;_head = nullptr;}void clear(){iterator it = begin();while (it != end()){it = erase(it);//erase(it++);//这个地方析构的值是返回的迭代器对象,是it的拷贝,不是it}}void push_back(const T& x){//node* tail = _head->_prev;//node* new_node = new node(x);//需要node(list_node<T>)的构造函数//tail->_next = new_node;//new_node->_prev = tail;//new_node->_next = _head;//_head->_prev = new_node;insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void insert(iterator pos, const T& x)//链表的迭代器插入数据不会失效,因为pos指针指向的位置是不变的{node* cur = pos._node;node* prev = cur->_prev;node* new_node = new node(x);prev->_next = new_node;new_node->_prev = prev;new_node->_next = cur;cur->_prev = new_node;}void pop_back(){erase(--end());}void pop_front(){erase(begin());}iterator erase(iterator pos)//由于pos指针位置被析构了,所以迭代器失效了{assert(pos != end());node* prev = pos._node->_prev;node* next = pos._node->_next;prev->_next = next;next->_prev = prev;delete pos._node;return iterator(next);}private:node* _head;};void print_list(const list<int>& lt){list<int>::const_iterator it = lt.begin();while (it != lt.end()){//(*it) *= 2;//const不可修改cout << *it << " ";++it;}cout << endl;}void test_list1(){const list<int> l;//const对象在定义时,最开始不会赋给常值,因为要初始化,否则没办法进行初始化,之后才会赋给const属性//const对象在定义的一瞬间不会给const属性list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);list<int>::iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";++it;}cout << endl;for (auto p : lt){cout << p << " ";}cout << endl;print_list(lt);}struct AA{int _a1;int _a2;AA(int a1 = 0, int a2 = 0)//全缺省的默认构造:_a1(a1), _a2(a2){}};void test_list2(){list<AA> lt;lt.push_back(AA(1, 1));lt.push_back(AA(2, 2));lt.push_back(AA(3, 3));list<AA>::iterator it = lt.begin();while (it != lt.end()){//cout << (*it)._a1 << " " << (*it)._a2 << " ";cout << it->_a1 << "," << it->_a2 << " ";//由于函数重载了 -> ,所以本来应该是it->->_a1,编译器优化了设置,变成了it->_a1;//it.operator->()->_a1,it.operator->()返回的是T*,T*->_a1就可以访问++it;}cout << endl;}void test_list3(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto p : lt){cout << p << " ";}cout << endl;auto pos = lt.begin();++pos;lt.insert(pos, 100);for (auto p : lt){cout << p << " ";}cout << endl;lt.push_front(200);lt.push_front(300);for (auto p : lt){cout << p << " ";}cout << endl;lt.push_back(400);lt.push_back(500);for (auto p : lt){cout << p << " ";}cout << endl;lt.pop_back();lt.pop_front();for (auto p : lt){cout << p << " ";}cout << endl;lt.pop_back();lt.pop_back();lt.pop_back();lt.pop_back();lt.pop_back();lt.pop_back();lt.pop_back();for (auto p : lt){cout << p << " ";}cout << endl;}void test_list4(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto p : lt){cout << p << " ";}cout << endl;lt.clear();for (auto p : lt){cout << p << " ";}cout << endl;lt.push_back(10);lt.push_back(2);lt.push_back(30);lt.push_back(1);for (auto p : lt){cout << p << " ";}cout << endl;}void test_list5(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto p : lt){cout << p << " ";}cout << endl;list<int> lt2(lt);for (auto e : lt2){cout << e << " ";}cout << endl;}
}