当前位置: 首页 > news >正文

NuHertz/HFSS: 使用矩形、径向和阻抗短截线的平面 LPF 切比雪夫-II 实现

我们今天的主题是使用 NuHertz 和 HFSS 设计 Microstrip Lowpass Chebyshev-Type2 滤波器。切比雪夫 2 型在通带中具有平坦的响应,在阻带中具有波纹。我们将比较 NuHertz 中的不同选项。

低通滤波器由集总 L 和 C 组件制成。这种方法很难用于高频应用程序。高频滤波器需要分布式元件。此过程使用 RF 线路和 RF 短截线。

可以使用 Richard 变换将电容器替换为开路 lambda/4 短截线。电感器有问题,因此只能用 lambda/4 短截线或 lambda/2 短截线代替。

 

4ea3ff67181a0735fac3fbc4c326c811.png

图 1.理查兹转型

Lowpass 不能用短存根完成,长存根也不实用。Kuroda 的身份允许您用短传输线和电容器替换电感器。因此,滤波器只是一堆由短传输线连接的开放短截线。

 

6b87748df6c288d92a093ee59f605eaf.png

图 2.黑田东彦的身份

 

LPF 可以使用较小的传输线部分来实现,每个传输线都有特定的阻抗,如低、高、低、高等。

知道可以做什么,我们回到 NuHertz。选择低通和切比雪夫型 2。需要指定要求、通带、阻带、阻带插入等。使用分布式元素。NuHertz 通过这样做为您提供了很多选择。我应该选择哪一个?所有这些都将在 HFSS 中实现,并在性能、尺寸、灵敏度等方面进行比较。

 

a3ce3317e86f6cabd67bc68855c5e35c.png

图 3.LPF Chebyshev-II 平面滤波器的 NuHertz 设置

选择任意一个选项并导出到 AEDT。

 

28ccee11c3dfa5b802d2467a835c41fc.png

图 4.将设计导出到 AEDT

在 AEDT 中,我们解决了所有选项。您将注意到过滤器已完全参数化。因此,可以执行优化。

 

f92dd284f29c436bd1d24aacacf67707.png

图 5:NuHertz 中的所有实现

以下是 NuHertz 预测与 HFSS 计算的比较。由于 HFSS 是 3D EM 求解器,因此它更准确。您可以使用优化器使设计相同或改进响应。

 

7a1d27c4e110d1543242c89f7ee9ae25.png

图 6:HFSS 与 NuHertz 插入(绿色 HFSS,蓝色 NuHertz)

 

a7d14a35ce12b68401c416bf7c959fec.png

图 7:HFSS 与 NuHertz 回波损耗(绿色 HFSS、蓝色 NuHertz)

下表总结了拓扑之间的差异。尺寸以毫米为单位。所有方法的长度都相同,但间隔的存根除外,它们很长。对滤波器宽度的观察相同,

实现

长度

高度

插入

@0.8千兆赫

回波损耗

@0.8千兆赫

插入@2GHz

阶梯短截线谐振器

53.38

17.66

-1.49

-6.20

-50.00

阶梯短截线谐振器拆分

54.05

18.56

-1.72

-5.54

-19.27

Single Stub 谐振器

60.40

14.83

-2.04

-4.81

-27.13

间隔存根

147.07

40.86

-0.9

-9.00

-9.00

Radial Resonators

55.92

16.70

-1.81

-5.38

-20.30

Radial Resonator 拆分

55.53

16.05

-2.02

-4.89

-19.27

表 1:LPF 拓扑

在 Nuhertz 中,为每种类型添加了以下注释:

实现

为什么要使用它?

阶梯短截线谐振器

标称 1 实现传输零点

阶梯短截线谐振器拆分

与顶部类似,但当谐振器太大时使用

Single Stub 谐振器

当单侧存根太宽时很有用。

间隔存根

有助于保持可实现的几何图形和低频响应精度。

Radial Resonators

当矩形短根太宽时很有用,因为它可以最大限度地减少 T 形接头的宽度,并在需要长脂肪部分时减小物理尺寸。

Radial Resonator 拆分

当单个径向谐振器太宽时很有用。

 

所有选项都具有平滑曲线,但间隔存根除外,它们具有波纹。即便如此,它具有最高的平均插入和最急剧的下降。同样,在 passband 之后,间隔的 stub 更稳定并快速下降。

 

55f2db4db9e0687745fa9c709929e9d0.png

图 8:回波损耗

 

7c361b7d1c0a53efc2b67002502286a8.png

图 9:高达 1 GHz 的回波损耗

 

e02c2c9f5040a8cc487eb31ac99fc074.png

图 10:高达 1 GHz 的插入平坦度

 

238b70f6d0add0003cb7bc1ed55a0195.png

图 11:高达 1 GHz 的插入

 


http://www.mrgr.cn/news/78866.html

相关文章:

  • Windows 11 上通过 WSL (Windows Subsystem for Linux) 安装 MySQL 8
  • 3. 多线程(1) --- 创建线程,Thread类
  • TDengine + MQTT :车联网时序数据库如何高效接入
  • 【H3CNE邓方鸣】路由协议概述+2025.1.5
  • Spring为什么要用三级缓存解决循环依赖?
  • 国产编辑器EverEdit - 使用技巧:变量重命名的一种简单替代方法
  • 公专业务能力
  • 【C语言】结构体(二)
  • Hot100 - 二叉树的中序遍历
  • 利用市场分析工具对特定国家的产品市场情况进行深入分析的全面指南
  • 无需U盘引导!快速在实体机上安装黑群晖 DSM 7.2(一步到位!黑群晖 DSM 7.2 内置硬盘引导安装教程)
  • Kafka-Connect自带示例
  • Maven学习
  • 力扣题解14——最长公共前缀
  • ThinkPHP Nginx 重写配置
  • 【老白学 Java】抽象类和抽象方法
  • 【UE5 C++】判断两点连线是否穿过球体
  • 基于 LlamaFactory 的 LoRA 微调模型支持 vllm 批量推理的实现
  • 【NLP 4、数学基础】
  • 【软考速通笔记】系统架构设计师⑤——软件工程基础知识
  • Zero to JupyterHub with Kubernetes中篇 - Kubernetes 常规使用记录
  • HarmonyOS
  • winform跨线程更新界面
  • Kafka常用的一些命令
  • QT去除窗口边框(无边框)
  • Java中 HttpURLConnection 和 HttpClient 详解(初学者友好)