当前位置: 首页 > news >正文

圆域函数的傅里叶变换和傅里叶逆变换

空域圆域函数的傅里叶变换

空域圆域函数(也称为空间中的圆形区域函数)通常指的是在二维空间中,以原点为中心、半径为 a a a的圆内取值为1,圆外取值为0的函数。这种函数可以表示为:

f ( x , y ) = { 1 if  x 2 + y 2 ≤ a 2 0 otherwise f(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \leq a^2 \\ 0 & \text{otherwise} \end{cases} f(x,y)={10if x2+y2a2otherwise

二维傅里叶变换定义为:

F ( u , v ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) e − j 2 π ( u x + v y ) d x d y F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(ux + vy)} dx dy F(u,v)=f(x,y)ej2π(ux+vy)dxdy

对于上述给定的圆形区域函数,其傅里叶变换 F ( u , v ) F(u, v) F(u,v)不能直接用简单的解析表达式来表示,但可以通过积分计算得到。由于该函数是关于原点对称的,并且仅依赖于到原点的距离,因此其傅里叶变换也将是关于原点对称的,并且只与频率变量 u , v u, v u,v到原点的距离有关。具体来说, F ( u , v ) F(u, v) F(u,v)可以表示为 F ( ρ ) F(\rho) F(ρ),其中 ρ = u 2 + v 2 \rho = \sqrt{u^2 + v^2} ρ=u2+v2

傅里叶变换的结果涉及到第一类贝塞尔函数 J 1 J_1 J1,它描述了变换后的分布特性。对于给定的圆形区域函数,其傅里叶变换形式为:

F ( ρ ) = a ρ J 1 ( 2 π a ρ ) F(\rho) = \frac{a} { \rho} J_1(2\pi a \rho) F(ρ)=ρaJ1(2πaρ)

这里, J 1 J_1 J1是第一类贝塞尔函数的第一个阶数。这个结果表明,在频率域中,原始圆形区域的影响随着距离增大而逐渐减小,且具有振荡性质,这反映了原始信号的空间局限性导致的频谱特征。

在这里插入图片描述
在这里插入图片描述

频域圆域函数的傅里叶逆变换

对于一个二维频域中的理想低通滤波器,其频率响应 H ( u , v ) H(u, v) H(u,v)可以表示为:

H ( u , v ) = { 1 if  u 2 + v 2 ≤ R 2 0 otherwise H(u, v) = \begin{cases} 1 & \text{if } u^2 + v^2 \leq R^2 \\ 0 & \text{otherwise} \end{cases} H(u,v)={10if u2+v2R2otherwise

其中 R R R是圆的半径。该函数在时域(或空间域)的逆傅里叶变换 f ( x , y ) f(x, y) f(x,y)可以写成等号的形式如下:

f ( x , y ) = 1 4 π 2 ∫ − ∞ ∞ ∫ − ∞ ∞ H ( u , v ) e j 2 π ( u x + v y ) d u d v f(x, y) = \frac{1}{4\pi^2}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} H(u, v) e^{j2\pi(ux + vy)} du dv f(x,y)=4π21H(u,v)ej2π(ux+vy)dudv

由于 H ( u , v ) H(u, v) H(u,v)在圆外为0,在圆内为1,我们可以将积分限制到圆内:

f ( x , y ) = 1 4 π 2 ∫ u 2 + v 2 ≤ R 2 e j 2 π ( u x + v y ) d u d v f(x, y) = \frac{1}{4\pi^2}\int_{u^2+v^2 \leq R^2} e^{j2\pi(ux + vy)} du dv f(x,y)=4π21u2+v2R2ej2π(ux+vy)dudv

这个积分可以进一步简化,并且已知结果是与第一类贝塞尔函数 J 1 J_1 J1有关的一个表达式。理想低通滤波器的空间域响应可以表示为:

f ( x , y ) = R 4 π 2 ⋅ J 1 ( 2 π R x 2 + y 2 ) x 2 + y 2 f(x, y) = \frac{R}{4\pi^2} \cdot \frac{J_1(2\pi R \sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} f(x,y)=4π2Rx2+y2 J1(2πRx2+y2 )

这里 J 1 ( z ) J_1(z) J1(z)是第一类贝塞尔函数, R R R是圆的半径。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
推导过程

理想低通滤波器在频域中的表示是一个在以原点为中心、半径为 R R R的圆域内为1,圆域外为0的函数。其数学表达式为:

H ( u , v ) = { 1 if  u 2 + v 2 ≤ R 2 0 otherwise H(u, v) = \begin{cases} 1 & \text{if } u^2 + v^2 \leq R^2 \\ 0 & \text{otherwise} \end{cases} H(u,v)={10if u2+v2R2otherwise

计算这个频域函数的傅里叶逆变换,以得到其在空间域中的表示 h ( x , y ) h(x, y) h(x,y)。傅里叶逆变换的公式为:

h ( x , y ) = 1 4 π 2 ∫ − ∞ ∞ ∫ − ∞ ∞ H ( u , v ) e i 2 π ( u x + v y ) d u d v h(x, y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(u, v) e^{i2\pi(ux + vy)} du dv h(x,y)=4π21H(u,v)ei2π(ux+vy)dudv

由于 H ( u , v ) H(u, v) H(u,v)只在圆域内非零,积分可以简化为在圆域内的积分:

h ( x , y ) = 1 4 π 2 ∫ u 2 + v 2 ≤ R 2 e i 2 π ( u x + v y ) d u d v h(x, y) = \frac{1}{4\pi^2} \int_{u^2 + v^2 \leq R^2} e^{i2\pi(ux + vy)} du dv h(x,y)=4π21u2+v2R2ei2π(ux+vy)dudv

为了简化计算,我们将直角坐标系下的积分转换到极坐标系下。设 u = r cos ⁡ θ u = r\cos\theta u=rcosθ v = r sin ⁡ θ v = r\sin\theta v=rsinθ,则 d u d v = r d r d θ du dv = r dr d\theta dudv=rdrdθ。因此,积分变为:

h ( x , y ) = 1 4 π 2 ∫ 0 R ∫ 0 2 π e i 2 π r ( x cos ⁡ θ + y sin ⁡ θ ) r d r d θ h(x, y) = \frac{1}{4\pi^2} \int_{0}^{R} \int_{0}^{2\pi} e^{i2\pi r (x\cos\theta + y\sin\theta)} r dr d\theta h(x,y)=4π210R02πei2πr(xcosθ+ysinθ)rdrdθ

首先计算内层积分:

∫ 0 2 π e i 2 π r ( x cos ⁡ θ + y sin ⁡ θ ) d θ \int_{0}^{2\pi} e^{i2\pi r (x\cos\theta + y\sin\theta)} d\theta 02πei2πr(xcosθ+ysinθ)dθ

z = x cos ⁡ θ + y sin ⁡ θ z = x\cos\theta + y\sin\theta z=xcosθ+ysinθ,则 z z z可以看作是 r r r ( x , y ) (x, y) (x,y)之间的点积。利用 Bessel 函数的性质,可以得到:

∫ 0 2 π e i 2 π r ( x cos ⁡ θ + y sin ⁡ θ ) d θ = 2 π J 0 ( 2 π r x 2 + y 2 ) \int_{0}^{2\pi} e^{i2\pi r (x\cos\theta + y\sin\theta)} d\theta = 2\pi J_0(2\pi r \sqrt{x^2 + y^2}) 02πei2πr(xcosθ+ysinθ)dθ=2πJ0(2πrx2+y2 )

其中 J 0 J_0 J0是零阶第一类 Bessel 函数。因此,原积分变为:

h ( x , y ) = 1 4 π 2 ∫ 0 R 2 π J 0 ( 2 π r x 2 + y 2 ) r d r h(x, y) = \frac{1}{4\pi^2} \int_{0}^{R} 2\pi J_0(2\pi r \sqrt{x^2 + y^2}) r dr h(x,y)=4π210R2πJ0(2πrx2+y2 )rdr

进一步简化:

h ( x , y ) = 1 2 π ∫ 0 R J 0 ( 2 π r x 2 + y 2 ) r d r h(x, y) = \frac{1}{2\pi} \int_{0}^{R} J_0(2\pi r \sqrt{x^2 + y^2}) r dr h(x,y)=2π10RJ0(2πrx2+y2 )rdr

接下来,计算这个积分。令 k = 2 π x 2 + y 2 k = 2\pi \sqrt{x^2 + y^2} k=2πx2+y2 ,则积分变为:

h ( x , y ) = 1 2 π ∫ 0 R J 0 ( k r ) r d r h(x, y) = \frac{1}{2\pi} \int_{0}^{R} J_0(kr) r dr h(x,y)=2π10RJ0(kr)rdr

利用 Bessel 函数的积分性质,可以得到:

∫ 0 R J 0 ( k r ) r d r = R J 1 ( k R ) k \int_{0}^{R} J_0(kr) r dr = \frac{R J_1(kR)}{k} 0RJ0(kr)rdr=kRJ1(kR)

因此,最终的解析表达式为:

h ( x , y ) = 1 2 π ⋅ R J 1 ( 2 π R x 2 + y 2 ) 2 π x 2 + y 2 h(x, y) = \frac{1}{2\pi} \cdot \frac{R J_1(2\pi R \sqrt{x^2 + y^2})}{2\pi \sqrt{x^2 + y^2}} h(x,y)=2π12πx2+y2 RJ1(2πRx2+y2 )

简化后:

h ( x , y ) = R 4 π 2 ⋅ J 1 ( 2 π R x 2 + y 2 ) x 2 + y 2 h(x, y) = \frac{R}{4\pi^2} \cdot \frac{J_1(2\pi R \sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} h(x,y)=4π2Rx2+y2 J1(2πRx2+y2 )

这就是理想低通滤波器的傅里叶逆变换的解析表达式。


http://www.mrgr.cn/news/78320.html

相关文章:

  • rabbitMq两种消费应答失败处理方式
  • wordpress 中添加图片放大功能
  • 对于相对速度的重新理解 - 插一句
  • MySQL 数据库索引优化实践指南
  • docker学习的初识
  • GitLab使用操作v1.0
  • Jenkins的使用
  • npm库xss依赖的使用方法和vue3 中Web富文本编辑器 wangeditor 使用xss库解决 XSS 攻击的方法
  • VLLM 格式化LLM输出
  • sed
  • 1、SpringBoo中Mybatis多数据源动态切换
  • Tomcat(36)Tomcat的静态资源缓存
  • docker-compose文件的简介及使用
  • C++虚函数面试题及参考答案
  • 【vue2】封装自定义的日历组件(一)之基础的组件结构
  • Educator头歌:离散数学 - 图论
  • 【机器学习】机器学习的基本分类-监督学习(Supervised Learning)
  • Swift——自动引用计数ARC
  • Javascript Insights: Visualizing Var, Let, And Const In 2024
  • Hbase2.2.7集群部署
  • 【不定长滑动窗口】【灵神题单】【刷题笔记】
  • 【拥抱AI】RAG如何通过分析反馈、识别问题来提高命中率
  • 探索.NET世界的无限可能——带你轻松了解.NET
  • Scala—Map用法详解
  • 图元交互设计
  • 【去毛刺】OpenCV图像处理基础:腐蚀与膨胀操作入门