当前位置: 首页 > news >正文

K8s的水平自动扩容和缩容HPA

HPA全称是Horizontal Pod Autoscaler,翻译成中文是POD水平自动伸缩,HPA可以基于CPU利用率对replication controller、deployment和replicaset中的pod数量进行自动扩缩容(除了CPU利用率也可以基于其他应程序提供的度量指标custom metrics进行自动扩缩容)。pod自动缩放不适用于无法缩放的对象,比如DaemonSets。
HPA由Kubernetes API资源和控制器实现。资源决定了控制器的行为。控制器会周期性的获取目标资源指标(如,平均CPU利用率),并与目标值相比较后来调整Pod副本数量。

1.安装metrics进行监控集群,获取指标

root@k8s-master:/home/vagrant# cat metrics.yaml 
apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:
- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:
- apiGroups:- ""resources:- nodes/metricsverbs:- get
- apiGroups:- ""resources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 0template:metadata:labels:k8s-app: metrics-serverspec:containers:- args:- --cert-dir=/tmp- --secure-port=10250- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-use-node-status-port- --metric-resolution=15s- --kubelet-insecure-tlsimage: registry.k8s.io/metrics-server/metrics-server:v0.7.2imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 10250name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSinitialDelaySeconds: 20periodSeconds: 10resources:requests:cpu: 100mmemory: 200MisecurityContext:allowPrivilegeEscalation: falsecapabilities:drop:- ALLreadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000seccompProfile:type: RuntimeDefaultvolumeMounts:- mountPath: /tmpname: tmp-dirnodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: trueservice:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100
root@k8s-master:/home/vagrant# kubectl apply -f metrics.yaml 
root@k8s-master:/home/vagrant# kubectl get pods -n kube-system|grep metrics
metrics-server-587b667b55-tjhfp            1/1     Running   0             11m

2.创建测试Deployment

root@k8s-master:/home/vagrant# cat php-apache.yaml 
kind: Deployment
apiVersion: apps/v1
metadata:name: php-apachelabels:app: apache
spec:replicas: 1selector: matchLabels:app: apachetemplate:metadata:name: apachelabels:app: apachespec:containers:- name: apacheimage: httpdimagePullPolicy: IfNotPresentports:- containerPort: 80name: httpdresources:limits:cpu: 800mrequests:cpu: 500m
---
kind: Service
apiVersion: v1
metadata:name: apache-servicelabels:app: apache
spec:selector:app: apacheports:- name: httptargetPort: 80port: 80root@k8s-master:/home/vagrant# kubectl apply -f php-apache.yaml 
deployment.apps/php-apache created
root@k8s-master:/home/vagrant# kubectl get svc,deployment,pods
NAME                     TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
service/apache-service   ClusterIP   10.105.192.165   <none>        80/TCP     2m
service/kubernetes       ClusterIP   10.96.0.1        <none>        443/TCP    43d
service/redis-svc        ClusterIP   10.109.12.172    <none>        6379/TCP   23hNAME                         READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/php-apache   1/1     1            1           24mNAME                             READY   STATUS    RESTARTS   AGE
pod/php-apache-b7cb67d98-b6qx9   1/1     Running   0          24m

3.创建HPA

root@k8s-master:/home/vagrant# vim hpa.yaml
kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2
metadata:name: php-apache
spec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: php-apacheminReplicas: 1maxReplicas: 10metrics:- type: Resourceresource:name: cputarget:            type: UtilizationaverageUtilization: 50
root@k8s-master:/home/vagrant# kubectl apply -f hpa.yaml 
horizontalpodautoscaler.autoscaling/php-apache created

4.模拟php-apache Pod CPU使用率增加

建议多开几个终端进行,效果更加明显
root@k8s-master:/home/vagrant# kubectl run -i --tty load-generator --rm --image=busybox:1.28 --restart=Never -- /bin/sh -c "while true; do wget -q -O- http://10.105.192.165; done"
root@k8s-master:/home/vagrant# kubectl get pods|grep load
load-generator               1/1     Running   0          54s
root@k8s-master:/home/vagrant# kubectl get deployment,po,hpa
NAME                         READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/php-apache   2/2     2            2           33mNAME                              READY   STATUS        RESTARTS   AGE
pod/load-generator                1/1     Running       0          105s
pod/load-generator2               1/1     Terminating   0          103s
pod/load-generator3               1/1     Running       0          24s
pod/php-apache-67fd659dcb-6z8tz   1/1     Running       0          23s
pod/php-apache-67fd659dcb-thb68   1/1     Running       0          114sNAME                                             REFERENCE               TARGETS        MINPODS   MAXPODS   REPLICAS   AGE
horizontalpodautoscaler.autoscaling/php-apache   Deployment/php-apache   cpu: 80%/50%   1         10        2          18m
root@k8s-master:/home/vagrant# kubectl get deployment,po,hpa
NAME                         READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/php-apache   10/10   10           10          36mNAME                              READY   STATUS    RESTARTS   AGE
pod/load-generator                1/1     Running   0          4m32s
pod/load-generator3               1/1     Running   0          3m11s
pod/load-generator4               1/1     Running   0          106s
pod/php-apache-67fd659dcb-2hdg5   1/1     Running   0          2m25s
pod/php-apache-67fd659dcb-52rcx   1/1     Running   0          2m40s
pod/php-apache-67fd659dcb-6z8tz   1/1     Running   0          3m10s
pod/php-apache-67fd659dcb-8wc7j   1/1     Running   0          2m25s
pod/php-apache-67fd659dcb-8zdf6   1/1     Running   0          2m40s
pod/php-apache-67fd659dcb-ckqkm   1/1     Running   0          2m9s
pod/php-apache-67fd659dcb-jncsb   1/1     Running   0          2m24s
pod/php-apache-67fd659dcb-pb89r   1/1     Running   0          2m25s
pod/php-apache-67fd659dcb-t66kv   1/1     Running   0          2m9s
pod/php-apache-67fd659dcb-thb68   1/1     Running   0          4m41sNAME                                             REFERENCE               TARGETS        MINPODS   MAXPODS   REPLICAS   AGE
horizontalpodautoscaler.autoscaling/php-apache   Deployment/php-apache   cpu: 40%/50%   1         10        10         21m

发现自动增加了Pod,实现自动扩容


http://www.mrgr.cn/news/78167.html

相关文章:

  • 03、MySQL安全管理和特性解析(DBA运维专用)
  • vulkanscenegraph显示倾斜模型(2)-参数解析与环境变量
  • 深入AIGC领域:ChatGPT开发者获取OpenAI API Key的实用指南
  • Kotlin 委托
  • 字玩FontPlayer开发笔记4 性能优化 首屏加载时间优化
  • 使用 C++ 和函数式编程构建高效的 AI 模型
  • C++ 优先算法 —— 无重复字符的最长子串(滑动窗口)
  • QT QRadioButton控件 全面详解
  • 数据结构 (12)串的存储实现
  • 大语言模型(LLM)不平衡的内存使用问题;训练过程中 Transformer层1和Transformer层2的反向传播计算量差异
  • JVM详解:垃圾回收机制
  • Android OTA 更新面试题及参考答案
  • 深入解析 ArrayList 源码:从动态扩容到高效存取的秘密
  • 开展网络安全成熟度评估:业务分析师的工具和技术
  • 【kafka02】消息队列与微服务之Kafka部署
  • 深入探索Elasticsearch:多场景冷热架构实战指南
  • 运维面试整理总结
  • HTTP中GET和POST的区别是什么?
  • nodepad配置c/c++ cmd快速打开创建项目文件
  • 2024.11.26总结
  • JVM系列之OOM观测准备
  • 蓝桥杯练习题
  • c++学习:json库例子
  • 【C语言】关于 JavaScript 与 C语言在函数嵌套定义方面的差异探讨
  • 【2024】前端学习笔记19-ref和reactive使用
  • 技术文档,they are my collection!