深度学习day2-Tensor 2
六 Tensor常见操作
Tensor:多维数组,用于存储和操作数据
1 获取元素值
data.item():单个元素tensor转为python数值
import torch
#标量
x=torch.tensor(1)
print(x.item())
#一阶
x=torch.tensor([100])
print(x.item())
#如果输入的数据超过1个,就不能用item函数取
#取出来的是基本数据的数字
x=torch.tensor([1,2])
print(x.item())
2 元素值运算
加减乘除幂次方取余取整等,带有_的方法会替换原始值
import torch
def test01():#带_结尾的函数基本都是直接操作原tensorx=torch.manual_seed(66)x=torch.randint(1,10,(3,3))print(x)#加x2=x.add(100)#返回一个新的数print(x2)x.add_(200)print(x)#减x=x.sub(1)print(x)x.sub_(100)print(x)#乘x=x.mul(2)print(x)x=x.mul_(2)print(x)#除x=x.div(4)print(x)x.div_(2)print(x)
x=x.pow(2)#平方print(x)
x=x**2print(x)x=x+10print(x)x=x-10print(x)x=x*10print(x)x=x/2print(x)x=x//2#取整print(x)x=x%2#取余print(x)x-=100#x=x-100print(x)
if __name__=='__main__':test01()
3 阿达玛积
矩阵对应位置的元素相乘,mul函数或者*
import torch
def test():x1=torch.tensor([1,2],[3,4])x2=torch.tensor([1,2],[3,4])#阿达玛积时必须形状一样x3=x1*x2print(x3)x4=x1.mul(x2)print(x4)if __name__=='__main__':test()
4 Tensor相乘
将两个向量映射为一个标量,如果第一个矩阵是(N,M),那么第二个矩阵的shape必须是(M,P),最后两个矩阵的点积运算的shape为(N,P),使用@或者matmul完成
mm只能用于2维矩阵
import torch
def test2():x1=torch.tensor([1,2],[3,4])x2=torch.tensor([1,2],[3,4])x3=torch.matmul(x1,x2)x3=x1.matmul(x2)x3=x1 @ x2x3=x1.mm(x2)print(x3)
x=torch.randint(1,4,(3,3,3))print(x)x2=torch.tensor(1,4,(3,3,3))print(x2)x3=x@x2x3=x.matmul(x2)print(x3)if __name__=='__main__':test2()
5 索引操作
1.简单索引
根据指定的下标选取数据
import torch
def test():data = torch.randint(0, 10, (3, 4))print(data)# 1. 行索引print("行索引:", data[0])# 2. 列索引print("列索引:", data[:, 0])# 3. 固定位置索引:2种方式都行print("索引:", data[0, 0], data[0][0])
if __name__ == "__main__":test()
2.列表索引
import torch
def test():torch.manual_seed(66)x=torch.randint(1,10,(5,5,3))#5个模块,模块里面的size是(5×3)print(x)print(x.shape)print(x[1])#取下标为1,实际上排序为第2个的模块print(x[1,2])#取模块下标为1行数下标为2的数据print(x[1,2,1].item())#取出实际上排序为第2个模块里面第3行2列的数据6print(x[0:2])#0,1print(x[0:2,1])#第1个第2个模块里面的第2行print(x[0:2,1:3])#第1个第2个模块里面的第2.3行print(x[0:2,1:3,2])#第1个第2个模块里面的第2.3行的第3列print(x[[1,3]])#第2和第4个模块print(x[[1,3],1])#第2和第4个模块的第2行print(x[[1,3],[1,2]])#取第2个模块的第2行和第4个模块的第3行,并非笛卡尔积坐标,而是:[1,1]×[3,2]print(x[2,[1,3],0:2])#取第3个模块的2.4行的1-2列数据#注意点:如果填列表,那么列表中的下标的数字是讲究顺序的print(x[[3,1]])#可以不按顺序取,结果是有顺序的print(x[[1,3]])#切片:冒号左右两边不写就表示到开头或者末尾print(x[0,1,:2])print(x[-1])print(x[:-1])#不取最后一个print(x[:-2])print(x[1][1][1])#[]:成员访问符print(x[1,1])print(x[[1,1]])
if __name__ == "__main__":test()
3.布尔索引
def tool(x):return x%2==0#进行布尔运算得到跟tensor形状一样的布尔数组, 算术运算符例如x-得到原来的tensor
def test2():#tensor的布尔运算torch.manual_seed(66)x=torch.randint(1,10,(5,5))print(x)x2=x>8print(x2)x3=x[x2]print(x3)print(x[x==5])print(x[x%2==1])#取出所有的奇数print(x[tool(x)])
if __name__ == "__main__":test2()
#思考:找出第一列是偶数 第二列是奇数 第三列是闰年的行中的第4列和第5列数据
x=torch.tensor([],[],[])
x[:,0]%2==0
x[:,1]%2==1
(x[:,2]%4==0 and x[:,2]%100!=0) or (x[:,2]%400==0 )
x[:,3:5]
4.索引赋值
def test3():torch.manual_seed(66)x=torch.randint(1,10,(5,5))print(x)x2=x[1,1]print(x2)x[1,1]=100print(x)x[:,3]=200print(x)x[:,:]=99x.fill_(66)print(x)
if __name__=='__main__':test3()
6 张量拼接
cat:在现有的维度上拼接,不会增加新维度
stack:在新维度上堆叠,会增加一个新维度
1.torch.cat
orch.cat(concatenate):在现有维度上将多个张量连接到一起,这些张量在除了指定拼接的维度之外的所有维度上的大小必须相同
import torch
def test01():torch.manual_seed(66)x=torch.randint(1,10,(3,3))y=torch.randint(1,10,(2,3))print(x)print(y)z=torch.cat([x,y],dim=0)#0是行1是列#不能在1的维度上拼接,因为x有3行y只有2行print(z)if __name__=='__main__':test01()
2.torch.stack
torch.stack:在新维度上拼接张量,它会增加一个新的维度,然后沿着指定维度堆叠张量。这些张量必须具有相同的形状。
堆叠指沿着某个维度一人出一个交替添加(stack)
拼接指一人出完下个人再出完(cat)
import torch
def test02():torch.manual_seed(66)x=torch.randint(1,10,(3,3))y=torch.randint(1,10,(3,3))print(x)print(y)z=torch.stack((x,y),dim=0)#维度的堆叠z=torch.stack([x,y],dim=1)print(z)
def test03():torch.manual_seed(66)x=torch.randint(1,10,(3,3,2))y=torch.randint(1,10,(3,3,2))print(x)print(y)z=torch.stack([x,y],dim=3)print(z)def test04():#加载本地图片为PIL对象img_pil=Image.open('./data/1.png')#把pil对象转化为张量transfer=transforms.ToTensor()img_tensor=transfer(img_pil)print(img_tensor)print(img_tensor.shape)print(img_tensor.shape)print(img_tensor)res=torch.stack([img_tensor[0],img_tensor[1],img_tensor[2]],dim=2)print(res,res.shape)print(sum(sum(res>100)))
if __name__=='__main__':test02()
7 形状操作
1.reshape
转换后的形状与原始形状具有相同的元素数量
import torch
def test01():x=torch.randint(1,10,(4,3))print(x)#reshape改变形状x2=torch.reshape(x,(2,6))#改变原x的数据内存空间和连续性,生成新的数据内存空间(具有连续性)print(x2)x3=torch.reshape(x,(2,2,3))print(x3)x4=torch.reshape(x,(3,5))#改变形状后的数量不能改变print(x4)#-1表示自动计算x5=torch.reshape(x,(-1,6))#-1相当于替代符,当不知道该填多少可以用-1替代print(x5)print(torch.reshape(x,(2,2,-1)))#-1表示某个维度的数量推出来,但是只能有一个维度为-1
if __name__=='__main__':test01()
2.view
特征:张量在内存中是连续的;返回的是原始张量视图,不重新分配内存,效率更高;
def test02():#内存上具有连续性才能viewx=torch.randint(1,10,(4,3))print(x)x2=x.view((2,6))#view操作的是连续的原始张量视图,不重新分配内存,只是重新编了一个下标,速度快print(x2)#改变形状,由于没有改变原x中的数据内存空间,因此它改变形状比reshape快
#非连续性不能view#x3=torch.randint(1,10,(4,3))#x4=torch.reshape(x3,(2,6))# x4=x3.t()#转置后x4的数据在内存中不连续# print(x4)# x5=x4.view(1,12)#改变形状,在内存中不连续的数据不能通过view来转换# print(x5)
#改变形状后,数据是否共享内存x6=torch.randint(1,10,(4,3))x7=x6.view(2,6)x6[1,1]=100print(x6,x7)if __name__=='__main__':test02()
view:高效,但需要连续性
reshape:灵活,但涉及内存复制
3.transpose
用于交换张量的两个维度,返回原张量的视图(内存)
def test03():x=torch.randint(1,10,(4,3,2))print(x,x.shape)x2=torch.transpose(x,0,1)#只调换前2个维度print(x2,x2.shape)if __name__=='__main__':test03()
4.permute
用于改变张量的所有维度顺序,可以交换多个维度
def test04():x=torch.randint(0,255,(3,512,360))#包不包含255print(x)#(C,h,w)(0,1,2)x2=x.permute(1,2,0)#(h,w,c)print(x2,x2.shape)if __name__=='__main__':test04()
5.flatten
用于将张量展平为一维向量
tensor.flatten(start_dim=0, end_dim=-1)
-
start_dim:从哪个维度开始展平。
-
end_dim:在哪个维度结束展平。默认值为
-1
,表示展平到最后一个维度。
def test05():x=torch.randint(0,255,(3,4))x2=x.flatten()print(x2)
x=torch.randint(0,255,(3,4,2,2))x2=x.flatten(start_dim=1,end_dim=2)#(3,[],2)print(x)print(x2)if __name__=='__main__':test05()
6升维和降维
-
unsqueeze:用于在指定位置插入一个大小为 1 的新维度。
-
squeeze:用于移除所有大小为 1 的维度,或者移除指定维度的大小为 1 的维度。
1.squeeze降维
def test06():#数据降维x=torch.randint(0,255,(1,3,4,1))print(x)x2=x.squeeze()#全部print(x2)x3=x.squeeze(0).squeeze(-1)#指定维度print(x3)if __name__=='__main__':test06()
2.unsqueeze升维
def test07():#数据升维x=torch.randint(0,255,(3,4))print(x)x2=x.unsqueeze(0)print(x2)print(x2.shape)
x2=x.unsqueeze(1)#(3,4)(3,1,4)print(x2)print(x2.shape)if __name__=='__main__':test01()
8 张量分割
chunk(data,x):把data分成x份
split(data,x):把data按照大小为x进行分割
def test08():x=torch.randint(0,255,(21,4))x2=torch.split(x,2)#每个tensor有2行print(x2)x3=torch.chunk(x,2)#分割成2份print(x3)
if __name__=='__main__':test08()
9 广播机制
允许对不同形状的张量进行计算,广播机制会自动扩展较小维度的张量,使其与较大维度的张量兼容,实现计算
规则:每个张量的维度至少为1,满足右对齐
import torch
def test01():torch.manual_seed(66)x=torch.randint(1,10,(4,3))print(x)x2=torch.randint(1,10,(1,3))print(x2)x3=x+x2print(x3)
x4=torch.randint(1,10,(4,3))x5=torch.randint(1,10,(4,1))print(x4)print(x5)x6=x4+x5print(x6)
def test02():data1d = torch.tensor([1, 2, 3])data2d = torch.tensor([[4], [2], [3]])print(data1d.shape, data2d.shape)# 进行计算:会自动进行广播机制print(data1d + data2d)
if __name__=='__main__':test01()
#2D和3D张量广播时会根据需要对两个张量进行形状扩展,从而能够进行运算。
def test003():# 2D 张量a = torch.tensor([[1, 2, 3], [4, 5, 6]])#2*3#2*2*3#[[[1, 2, 3], [4, 5, 6]],[[1, 2, 3], [4, 5, 6]]]# 3D 张量b = torch.tensor([[[2, 3, 4]], [[5, 6, 7]]])#2*1*3#2*2*3#[[[2, 3, 4],[2, 3, 4]], [[5, 6, 7],[5, 6, 7]]]print(a.shape, b.shape)# 进行运算result = a + bprint(result, result.shape)
if __name__=='__main__':test03()
10 数学运算
1基本操作
import torch
def test():data = torch.tensor([[1, 2, -3.5], [4, 5, 6], [10.5, 18.6, 19.6], [11.05, 19.3, 20.6], ])print(data)x1=torch.floor(data)#向下取整(下指往下取整)print(x1)x2=torch.ceil(data)#向上取整(上指往大取整)print(x2)x3=torch.round(data)#四舍五入(内部用的py的round函数:四舍6入 5看整数的个位的奇数偶数,奇进偶不进)print(x3)x4=torch.trunc(data)#截断(只保留整数部分)print(x4)x5=torch.frac(data)#截断(只保留小数部分)print(x5)x6=torch.fix(data)#向0的方向取整,负数往向大的方向取整,正数往向小的方向取整print(x6)x7=data%2#取模print(x7)x8=torch.abs(data)#取绝对值(曼哈顿街道距离)print(x8)if __name__=='__main__':test()
2三角函数
import torch
def test02():#3.141592653 里面的是数字,相当于弧度print(torch.pi)deg=torch.pi/180#相当于度data=torch.tensor([0,90*deg,3])x=torch.sin(data)print(x)x=torch.cos(data)print(x)x=torch.sinh(data)#双曲正弦函数print(x)x=torch.cosh(data)#双曲余弦函数print(x)x=torch.tan(data)print(x)x=torch.tanh(data)#双曲正切函数print(x)
if __name__=='__main__':test02()
3统计学函数
import torch
import math
import cv2
def test03():torch.manual_seed(66)x=torch.randint(1,10,(4,3)).type(torch.float32)print(x)x1=x.mean()#平均数print(x1)x2=torch.mean(x)#平均数print(x2)x3=torch.sum(x)#求和print(x3)x5=torch.std(x)#标准差print(x5)x6=torch.var(x)#方差print(x6)x7=torch.median(x)#中位数print(x7)x8=torch.mode(x)#众数print(x8.values)x9=torch.max(x)#最大值print(x9)x9=torch.min(x)#最小值print(x9)x10=torch.sort(x)#排序print(x10)print(x10.values)#值print(x10.indices)#下标x11=x.sort()print(x11)arr=[8,10,11,13,14]res=arr.sort(key=lambda x:abs(x-10))#列表 谁离10近谁排前面print(res)def myabs(x):return abs(x-10)arr.sort(key=myabs)#列表print(arr)x=torch.tensor([1,1,1,2,3,4,5,2,3,4,5,6],dtype=torch.float32)print(torch.topk(x,3))#大概率是快排print(torch.histc(x,bins=5,min=2,max=4))#统计每个数出现的次数,指定个数print(torch.unique(x))#分类的数据集中看有几种类型print(torch.unique(x).shape)x=torch.tensor([1,1,1,2,3,4,5,2,3,4,5,6],dtype=torch.float32)print(torch.bincount(x))#统计每个数出现的次数,不指定个数
img=cv2.imread("./data/1.png")img_tensor=torch.from_numpy(img).flatten()bincount=torch.bincount(img_tensor)print(bincount)res=torch.topk(bincount,1)#出现得最多的像素值print(res)
if __name__=='__main__':test()
11保存和加载
torch.save(x,"路径")
torch.load(x,"路径")
import torch
def test01():x=torch.tensor([1,2,3])torch.save(x,"./data/tensor.pth")#保存
def test01():device=torch.device("cuda" if torch.cuda.is_available() else "cpu")x=torch.load("./data/tensor.pth",map_location=device)#加载到指定设备x=x.cuda()#返回一个新的x=x.to("cuda")#返回一个新的print(x)print(x.device)
if __name__=='__main__':test01()
12并行化
torch.get_num_threads()#获取cpu的线程
torch.set_num_threads(4)#设置pytorch使用cpu的线程数量
import torch
def test03():count=torch.get_num_threads()#获取cpu的线程print(count)
def test04():torch.set_num_threads(4)#设置cpu的线程count=torch.get_num_threads()#获取cpu的线程print(count)
if __name__=='__main__':test03()