当前位置: 首页 > news >正文

[NeurIPS 2024]Long-range Brain Graph Transformer

论文网址:NeurIPS Poster Long-range Brain Graph Transformer

论文代码:Page not found · GitHub · GitHub

好一个Page not fund

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related Work

2.3.1. Brain Network Analysis

2.3.2. Graph Transformer

2.4. Method

2.4.1. Adaptive Long-range Aware (ALGA) Strategy

2.4.2. Long-range Brain Graph Transformer

2.5. Experiments

2.5.1. Experimental Settings

2.5.2. Performance Comparison

2.5.3. Ablation Study

2.5.4. In-depth Analysis of ALTER and ALGA Strategy

2.6. Discussions and Conclusion

3. 知识补充

3.1. Random walk kernel

4. Reference


1. 心得

(1)我能说什么呢?爱中中呗

2. 论文逐段精读

2.1. Abstract

        ①额这倒没什么好说的就是和论文名字一样

2.2. Introduction

        ①Brain possesses short term and long term connectivity at the same time:

        ②The proposed Adaptive Long-range aware TransformER (ALTER)

2.3. Related Work

2.3.1. Brain Network Analysis

        ①Lists GNN based neuropsychiatric disorder diagnosis methods and graph pooling methods

2.3.2. Graph Transformer

        ①Introduced Transformer related works and pointed out these works are more competitive

        ②They thought existing Transformer based methods on neuropsychiatric disorder diagnosis do not capture long range dependence

2.4. Method

        ①For a set of brain network \left \{ G_1,...,G_L \right \}\subseteq \mathcal{G} with label \left \{ y_1,...,y_L \right \}\subseteq Y, where L denotes the number of subjects

        ②A single brain graph G=(V,X,A), where V is node set, X \in \mathbb{R}^{N \times d}  denotes node feature matrix with N ROIs and dimension dA \in \mathbb{R}^{N \times N} denotes adjacency matrix

        ③Learning task: learn a vector h_G for on brain, which is able to predict the disease state y_G=f\left ( h_G \right ), where f denotes prediction function

        ④Framework of ALTER:

 

2.4.1. Adaptive Long-range Aware (ALGA) Strategy

(1)Adaptive Factors

        ①The adaptive factor F_G \in \mathbb{R}^{N \times N} is calculated by correlation:

where t_i denotes the original feature of fMRI (eg. BOLD signal)

        ②Compared to random walk, adaptive factor based method will walk to more relevant node

(2)Adaptive Long-range Encoding

        ①The probability of walking (transfer matrix):

        ②State vector:

where k denotes the number of hops, t_j\left ( k \right ) is the probability of the walker stops at node j after k times walk

        ③And:

where K denotes the total hops of random walk

        ④General recursive formula:

T(k)=T(0)P^k_G

        ⑤Fine tune the transfer probability by adaptive factor:

\hat{P}_G=F_G \odot P_G

where \odot denotes dot product

        ⑥Random walk kernel:

R=\left ( F_G \odot A_G \right )D^{-1}_G

        ⑦The long-range embedding E_G:

where I is identity matrix, e_i denotes long range embedding associated with the i-th node(这个R啥玩意儿?

2.4.2. Long-range Brain Graph Transformer

(1)Injecting Long-range Embedding

        ①Remapping E_G by linear layer to:

where W_G \in \mathbb{R}^{k' \times k} and b_G \in \mathbb{R}^{k'} is learnable weight matrix and bias vecoter respectively

(2)Self-attention Module

        ①The token is calculated by:

        ②Then fed them into Transformer encoder with L-layer nonlinear mapping and M attention head:

Z_{G}=W_{o}\left(||_{m=1}^{M}Z_{G}^{m,l}\right)\in\mathbb{R}^{N\times d_{out}}, Z_{G}^{m,l}=\mathrm{softmax}\left(\frac{Q^{m,l}K^{m,l}{}^{T}}{\sqrt{d_{out}^{m,l}}}\right)V^{m,l}\in\mathbb{R}^{N\times d_{out}^{m,l}}

where Q^{m,l}=W_{q}Z_{G}^{m,l-1}K^{m,l^{T}}=\left(W_{k}Z_{G}^{m,l-1}\right)^{T} and V^{m,l}=W_{v}Z_{G}^{m,l-1}, where Z_{G}^{0}=\hat{X}_{G}, both || and \left [ \cdot | \cdot \right ] are concatenate operator(作者写的concentrate), l denotes layer index, m is head index, W_{q},W_{k},W_{v}\in\mathbb{R}^{d_{out}^{m,l}\times d_{out}^{m,l-1}} and W_{o}\in\mathbb{R}^{d_{out}\times d_{out}^{m}} are learnable projection matrices

(3)Readout Module

        ①Classification:

Y_G=\text{Softmax}\left(\text{MLP}\left(\text{Readout}\left(Z_G\right)\right)\right)

where they chose clustering based pooling as readout function

2.5. Experiments

2.5.1. Experimental Settings

(1)Datasets and Preprocessing

        ①ABIDE: 519 with ASD and 439 HC

        ②ADNI: 54 with AD and 76 HC

        ③Tool: DPARSF

        ④Node feature matrix: Pearson correlation matrix

        ⑤Adjacency matrix: threshold FC with 0.3

(2)Baselines

        ①Includes generalized graph learning methods and brain graph based methods

(3)Metrics

        ①Evaluation metrics: ACC, AUC, f1,SEN and SPE

        ②Running times: 10

(4)Implementation Details

        ①Number of steps K=16

        ②Number of nonlinear mapping layer L=2

        ③Number of attention head M=4

        ④Data split: 7:2:1

        ⑤Optimizer: Adam

        ⑥Scheduler: CosLR

        ⑦Initial learning rate: 1e-4 with 1e-4 weigt decay

        ⑧Batch size: 16

        ⑨Epoch: 200

2.5.2. Performance Comparison

(1)Results

        ①Performance table:

(hh,这ABIDE上A-GCL就53,BrainNETGNN也51,我CGN,GAT,graphsage,GIN那些ACC跑55-65就说我压基线,这b*意儿就真仁者见仁智者见智吧。难道应该说基线就是很高但是新出的这些模型都比不上基线是吧)

(2)Vairous Readout Function

        ①Readout ablation:

(哥们儿论文里图就这么糊)

2.5.3. Ablation Study

(1)Adaptive Long-range Aware with Varying Architectures

        ①ALGA ablation:

        ②Readout ablation on different framework:

2.5.4. In-depth Analysis of ALTER and ALGA Strategy

        ①Hop and adaptive factor ablation:

        ②Attention socre map:

2.6. Discussions and Conclusion

(1)Limitations

        ①Better balance short range and long range dependency

        ②Multi modality required

(2)Conclusion

        ①他说他的模型很棒

3. 知识补充

3.1. Random walk kernel

(1)定义:随机游走核是一种基于图的相似度度量方法,主要用于图数据中节点或图之间的相似度计算。它是通过模拟随机游走在图中的行为来衡量图的节点或子图之间的相似度。

4. Reference

Yu, S. et al. (2024) 'Long-range Brain Graph Transformer', NeurIPS.  


http://www.mrgr.cn/news/69808.html

相关文章:

  • LabVIEW大数据处理
  • 【计算机网络】网络框架
  • glsl中vec4是行矩阵还是列矩阵
  • iOS开发 swift系列---一个视图数据修改后,如何刷新另外一个视图
  • FPGA学习(10)-数码管
  • 两个有趣的小东西(qt和类型转换)
  • Spark:背压机制
  • 优选算法 - 1 ( 双指针 移动窗口 8000 字详解 )
  • 简单的链表相加
  • 华为机试HJ33 整数与IP地址间的转换
  • RabbitMQ集群搭建
  • spring cloud实战总结(优雅下线、灰度发布)
  • 推荐一款批量自动识别图片方向的软件:批量校正图像方向工具
  • PostgreSQL的奥秘:深入探究事务与锁的秘密世界
  • MySQL系列之如何在Linux只安装客户端
  • 《Python网络安全项目实战》项目4 编写网络扫描程序
  • 力扣力扣力:91.解码方法
  • 「C/C++」C++标准库 之 #include<iostream> 标准输入输出
  • CSS 色彩魔法:打造绚丽网页风格
  • c++左值、右值、完美转发、万能引用、参数展开
  • MyBatis6-逆向工程、分页插件
  • 问:聊聊Spring IOC机制
  • npm常用函数定义手册(持续更新)
  • 使用 nsenter 进入 Docker 容器的操作
  • 逆向攻防世界CTF系列21-answer_to_everything
  • 【Rust练习】20.进一步深入特征