Linux进程信号
文章目录
- 信号入门
- 生活角度的信号
- 技术应用角度的信号
- 信号概念
- 信号处理常见方式概述
- 产生信号
- 通过终端按键产生信号
- 通过系统函数向进程发信号
- 由软件条件产生信号
- 由硬件异常产生信号
- 阻塞信号
- 信号其他相关常见概念
- 在内核中的表示
- sigset_t
- 信号集操作函数
- sigprocmask
- 捕捉信号
- 内核如何实现信号的捕捉
- sigaction
- 可重入函数
信号入门
生活角度的信号
- 你在网上买了很多件商品,在等待不同商品快递的到来。但即便快递还没有到来,你也知道快递到了的时候应该怎么处理快递,也就是你能“识别快递”。
- 当快递到达目的地了,你收到了快递到来的通知,但是你不一定要马上下楼取快递,也就是说取快递的行为并不是一定要立即执行,可以理解成在“在合适的时候去取”。
- 在你收到快递到达的通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间内你并没有拿到快递,但是你知道快递已经到了,本质上是你“记住了有一个快递要去取”。
- 当你时间合适,顺利拿到快递之后,就要开始处理快递了,而处理快递的方式有三种:1、执行默认动作(打开快递,使用商品)2、执行自定义动作(快递是帮别人买的,你要将快递交给他)3、忽略(拿到快递后,放在一边继续做自己的事)。
- 快递到来的整个过程,对你来讲是异步的,你不能确定你的快递什么时候到。
技术应用角度的信号
编写以下程序并运行:
#include <stdio.h>
#include <unistd.h>int main()
{while (1){printf("hello signal!\n");sleep(1);}return 0;
}
我们知道该程序的运行结果就是死循环地进行打印,而对于死循环来说,最好的方式就是使用Ctrl+C对其进行终止。
为什么使用Ctrl+C后,该进程就终止了?
实际上当用户按Ctrl+C时,这个键盘输入会产生一个硬中断,被操作系统获取并解释成信号(Ctrl+C被解释成2号信号),然后操作系统将2号信号发送给目标前台进程,当前台进程收到2号信号后就会退出。
我们可以使用signal函数对2号信号进行捕捉,证明当我们按Ctrl+C时进程确实是收到了2号信号。使用signal函数时,我们需要传入两个参数,第一个是需要捕捉的信号编号,第二个是对捕捉信号的处理方法,该处理方法的参数是int,返回值是void。
注意:
- Ctrl-C 产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程
结束就可以接受新的命令,启动新的进程。 - Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生
的信号。 - 前台进程在运行过程中用户随时可能按下 Ctrl-C 而产生一个信号,也就是说该进程的用户空间代码执行
到任何地方都有可能收到 SIGINT 信号而终止,所以信号相对于进程的控制流程来说是异步
(Asynchronous)的。
信号概念
信号是进程之间事件异步通知的一种方式,属于软中断。
用kill -l命令可以察看系统定义的信号列表
其中1 ~ 31号信号是普通信号,34 ~ 64号信号是实时信号,普通信号和实时信号各自都有31个,每个信号都有一个编号和一个宏定义名称
信号处理常见方式概述
- 忽略此信号。
- 执行该信号的默认处理动作。
- 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉
(Catch)一个信号。
产生信号
通过终端按键产生信号
按Ctrl+C终止进程和按Ctrl+\终止进程,有什么区别?
按Ctrl+C实际上是向进程发送2号信号SIGINT,而按Ctrl+\实际上是向进程发送3号信号SIGQUIT。查看这两个信号的默认处理动作,可以看到这两个信号的Action是不一样的,2号信号是Term,而3号信号是Core。
erm和Core都代表着终止进程,但是Core在终止进程的时候会进行一个动作,那就是核心转储。
什么是核心转储?
在云服务器中,核心转储是默认被关掉的,我们可以通过使用ulimit -a命令查看当前资源限制的设定。
其中,第一行显示core文件的大小为0,即表示核心转储是被关闭的。
我们可以通过ulimit -c size命令来设置core文件的大小。
core文件的大小设置完毕后,就相当于将核心转储功能打开了。此时如果我们再使用Ctrl+\对进程进行终止,就会发现终止进程后会显示core dumped。
通过系统函数向进程发信号
当我们要使用kill命令向一个进程发送信号时,我们可以以kill -信号编号 进程ID的形式进行发送。
kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。
int kill(pid_t pid, int sig);
kill函数用于向进程ID为pid的进程发送sig号信号,如果信号发送成功,则返回0,否则返回-1。
raise函数可以给当前进程发送指定的信号(自己给自己发信号)。
int raise(int sig);
raise函数用于给当前进程发送sig号信号,如果信号发送成功,则返回0,否则返回一个非零值。
abort函数使当前进程接收到信号而异常终止。
#include <stdlib.h>
void abort(void);
就像exit函数一样,abort函数总是会成功的,所以没有返回值。
例如,下列代码当中每隔一秒向当前进程发送一个SIGABRT信号。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>void handler(int signo)
{printf("get a signal:%d\n", signo);
}
int main()
{signal(6, handler);while (1){sleep(1);abort();}return 0;
}
说明一下: abort函数的作用是异常终止进程,exit函数的作用是正常终止进程,而abort本质是通过向当前进程发送SIGABRT信号而终止进程的,因此使用exit函数终止进程可能会失败,但使用abort函数终止进程总是成功的。
由软件条件产生信号
SIGALRM信号
调用alarm函数可以设定一个闹钟,也就是告诉操作系统在若干时间后发送SIGALRM信号给当前进程,alarm函数的函数原型如下:
unsigned int alarm(unsigned int seconds);
alarm函数的作用就是,让操作系统在seconds秒之后给当前进程发送SIGALRM信号,SIGALRM信号的默认处理动作是终止进程。
alarm函数的返回值:
- 若调用alarm函数前,进程已经设置了闹钟,则返回上一个闹钟时间的剩余时间,并且本次闹钟的设置会覆盖上一次闹钟的设置。
- 如果调用alarm函数前,进程没有设置闹钟,则返回值为0。
例如,我们可以用下面的代码,测试自己的云服务器一秒时间内可以将一个变量累加到多大。
#include <stdio.h>
#include <signal.h>
#include <unistd.h>int main()
{int count = 0;alarm(1);while (1){count++;printf("count: %d\n", count);}return 0;
}
运行代码后,可以发现我当前的云服务器在一秒内可以将一个变量累加到九万左右。
但实际上我当前的云服务器在一秒内可以执行的累加次数远大于两万,那为什么上述代码运行结果比实际结果要小呢?
主要原因有两个,首先,由于我们每进行一次累加就进行了一次打印操作,而与外设之间的IO操作所需的时间要比累加操作的时间更长,其次,由于我当前使用的是云服务器,因此在累加操作后还需要将累加结果通过网络传输将服务器上的数据发送过来,因此最终显示的结果要比实际一秒内可累加的次数小得多。
由硬件异常产生信号
为什么C/C++程序会崩溃?
当我们程序当中出现类似于除0、野指针、越界之类的错误时,为什么程序会崩溃?
- 本质上是因为进程在运行过程中收到了操作系统发来的信号进而被终止,那操作系统是如何识别到一个进程触发了某种问题的呢?
我们知道,CPU当中有一堆的寄存器,当我们需要对两个数进行算术运算时,我们是先将这两个操作数分别放到两个寄存器当中,然后进行算术运算并把结果写回寄存器当中。
此外,CPU当中还有一组寄存器叫做状态寄存器,它可以用来标记当前指令执行结果的各种状态信息,如有无进位、有无溢出等等。而操作系统是软硬件资源的管理者,在程序运行过程中,若操作系统发现CPU内的某个状态标志位被置位,而这次置位就是因为出现了某种除0错误而导致的,那么此时操作系统就会马上识别到当前是哪个进程导致的该错误,并将所识别到的硬件错误包装成信号发送给目标进程,本质就是操作系统去直接找到这个进程的task_struct,并向该进程的位图中写入8信号,写入8号信号后这个进程就会在合适的时候被终止。
总结一下:
C/C++程序会崩溃,是因为程序当中出现的各种错误最终一定会在硬件层面上有所表现,进而会被操作系统识别到,然后操作系统就会发送相应的信号将当前的进程终止。
阻塞信号
信号其他相关常见概念
- 实际执行信号的处理动作称为信号递达(Delivery)
- 信号从产生到递达之间的状态,称为信号未决(Pending)。
- 进程可以选择阻塞 (Block )某个信号。
- 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
- 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。
在内核中的表示
- 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
- SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会在改变处理动作之后再接触阻塞。
- SIGQUIT信号未产生过,但一旦产生SIGQUIT信号,该信号将被阻塞,它的处理动作是用户自定义函数sighandler。如果在进程解除对某信号的阻塞之前,这种信号产生过多次,POSIX.1允许系统递达该信号一次或多次。Linux是这样实现的:普通信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里,这里只讨论普通信号。
sigset_t
根据信号在内核中的表示方法,每个信号的未决标志只有一个比特位,非0即1,如果不记录该信号产生了多少次,那么阻塞标志也只有一个比特位。
因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储。在我当前的云服务中,sigset_t类型的定义如下:(不同操作系统实现sigset_t的方案可能不同)
#define _SIGSET_NWORDS (1024 / (8 * sizeof (unsigned long int)))
typedef struct
{unsigned long int __val[_SIGSET_NWORDS];
} __sigset_t;typedef __sigset_t sigset_t;
sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态。
- 在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞。
- 在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。
阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。
信号集操作函数
sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统
实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做
任何解释,比如用printf直接打印sigset_t变量是没有意义的
#include <signal.h>int sigemptyset(sigset_t *set);int sigfillset(sigset_t *set);int sigaddset(sigset_t *set, int signum);int sigdelset(sigset_t *set, int signum);int sigismember(const sigset_t *set, int signum);
- 函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有
效信号。 - 函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示 该信号集的有效信号包括系
统支持的所有信号。 - 注意,在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的
状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号
这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,用于判断一个信号集的有效信号中是否包含某种信号,若包含则返回1,不包含则返回0,出错返回-1。
sigprocmask
sigprocmask函数可以用于读取或更改进程的信号屏蔽字(阻塞信号集),该函数的函数原型如下:
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
//sigprocmask函数调用成功返回0,出错返回-1。
参数说明:
- 如果oset是非空指针,则读取进程当前的信号屏蔽字通过oset参数传出。
- 如果set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改。
- 如果oset和set都是非空指针,则先将原来的信号屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。
假设当前的信号屏蔽字为mask,下表说明了how参数的可选值及其含义:
捕捉信号
内核如何实现信号的捕捉
当我们在执行主控制流程的时候,可能因为某些情况而陷入内核,当内核处理完毕准备返回用户态时,就需要进行信号pending的检查。(此时仍处于内核态,有权力查看当前进程的pending位图)
在查看pending位图时,如果发现有未决信号,并且该信号没有被阻塞,那么此时就需要该信号进行处理。
如果待处理信号的处理动作是默认或者忽略,则执行该信号的处理动作后清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,从主控制流程中上次被中断的地方继续向下执行即可。
sigaction
sigaction函数可以读取和修改与指定信号相关联的处理动作。
#include <signal.h>
int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);
-
调用成功则返回0,出错则返回- 1。signo是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体:
-
将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动
作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回
值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信
号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。
当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。
如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。
可重入函数
- main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的时候,因
为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了。 - 像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称
为重入 - insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之,
如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。
如果一个函数符合以下条件之一则是不可重入的:
- 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
- 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。