当前位置: 首页 > news >正文

Ollama:本地部署与运行大型语言模型的高效工具

Ollama部署、运行大型语言模型

概述

Ollama是一个专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计的工具。

官方网站:https://ollama.com/

Github:https://github.com/ollama/ollama

安装

Ollama支持macOS、Linux和Windows多个平台运行

macOS:下载Ollama

Windows:下载Ollama

Docker:可在Docker Hub上找到Ollama Docker镜像

Linux:因为使用服务器,这里便以Linux操作系统使用为例记录说明


其中Linux通过命令直接安装如下:

root@master:~/work# curl -fsSL https://ollama.com/install.sh | sh
>>> Downloading ollama...
######################################################################## 100.0%##O#-#                                                                        
>>> Installing ollama to /usr/local/bin...
>>> Creating ollama user...
>>> Adding ollama user to render group...
>>> Adding ollama user to video group...
>>> Adding current user to ollama group...
>>> Creating ollama systemd service...
>>> Enabling and starting ollama service...
Created symlink /etc/systemd/system/default.target.wants/ollama.service → /etc/systemd/system/ollama.service.
>>> NVIDIA GPU installed.

查看ollama的状态

root@master:~/work# systemctl status ollama
● ollama.service - Ollama ServiceLoaded: loaded (/etc/systemd/system/ollama.service; enabled; vendor preset: enabled)Active: active (running) since Thu 2024-05-16 07:48:52 UTC; 19s agoMain PID: 1463063 (ollama)Tasks: 19 (limit: 120679)Memory: 488.7MCPU: 6.848sCGroup: /system.slice/ollama.service└─1463063 /usr/local/bin/ollama serveMay 16 07:48:52 master ollama[1463063]: Couldn't find '/usr/share/ollama/.ollama/id_ed25519'. Generating new private key.
May 16 07:48:52 master ollama[1463063]: Your new public key is:
May 16 07:48:52 master ollama[1463063]: ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIKkP+MSQgroycM4iPUhDAUW02qwhEIB4vtANecwzN3En

安装成功后执行ollama -v命令,查看版本信息,如果可以显示则代表已经安装好

root@master:~# ollama -v
ollama version is 0.1.38

配置

编辑vim /etc/systemd/system/ollama.service文件来对ollama进行配置

1.更改HOST

由于Ollama的默认参数配置,启动时设置了仅本地访问,因此需要对HOST进行配置,开启监听任何来源IP

[Service]
# 配置远程访问
Environment="OLLAMA_HOST=0.0.0.0"

2.更改模型存储路径

默认情况下,不同操作系统大模型存储的路径如下:

macOS: ~/.ollama/modelsLinux: /usr/share/ollama/.ollama/modelsWindows: C:\Users.ollama\models

官方提供设置环境变量OLLAMA_MODELS来更改模型文件的存储路径

[Service]
# 配置OLLAMA的模型存放路径
Environment="OLLAMA_MODELS=/data/ollama/models"

注意:

由于当时使用root账号,同时目录权限也属于root,配置好后导致服务无法正常启动

此时,可以查看Ollama的运行日志,特别是在遇到问题需要调试时,可以使用以下命令:

journalctl -u ollama

解决问题:

因为指定的目录ollama用户及用户组没有相应权限,导致服务不能启动。通过授权给相应的目录权限解决问题。

chown ollama:ollama ollama/models

3.更改运行GPU

配置环境变量CUDA_VISIBLE_DEVICES来指定运行Ollama的GPU,默认不需要改动,适用于多卡环境。

Environment="CUDA_VISIBLE_DEVICES=0,1"

4.应用配置 重载systemd并重启Ollama

systemctl daemon-reloadsystemctl restart ollama

5.访问测试

浏览器访问http://IP:11434/,出现Ollama is running代表成功。 在这里插入图片描述

Ollama命令

Shell窗口输入ollama,打印ollama相关命令说明

root@master:~/work# ollama
Usage:ollama [flags]ollama [command]Available Commands:serve       Start ollamacreate      Create a model from a Modelfileshow        Show information for a modelrun         Run a modelpull        Pull a model from a registrypush        Push a model to a registrylist        List modelsps          List running modelscp          Copy a modelrm          Remove a modelhelp        Help about any commandFlags:-h, --help      help for ollama-v, --version   Show version informationUse "ollama [command] --help" for more information about a command.

ollama的操作命令跟docker操作命令非常相似

ollama serve	# 启动ollama
ollama create	# 从模型文件创建模型
ollama show		# 显示模型信息
ollama run		# 运行模型
ollama pull		# 从注册仓库中拉取模型
ollama push		# 将模型推送到注册仓库
ollama list		# 列出已下载模型
ollama cp		# 复制模型
ollama rm		# 删除模型
ollama help		# 获取有关任何命令的帮助信息

模型库

Ollama的Library,类似Docker的Docker Hub,在这里可以查找受Ollama支持的大模型。 在这里插入图片描述 以下是一些可以下载的示例模型:

注意:Ollama支持8 GB的RAM可用于运行7B型号,16 GB可用于运行13B型号,32 GB可用于运行33B型号。当然这些模型是经过量化过的。

在这里插入图片描述

使用示例

下载llama3-8b模型

root@master:~# ollama pull llama3:8b
pulling manifest 
pulling 00e1317cbf74... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB                         
pulling 4fa551d4f938... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  12 KB                         
pulling 8ab4849b038c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  254 B                         
pulling 577073ffcc6c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  110 B                         
pulling ad1518640c43... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  483 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success

下载成功查看模型

root@master:~# ollama list
NAME            ID              SIZE    MODIFIED      
llama3:8b       a6990ed6be41    4.7 GB  3 minutes ago

运行模型并进行对话

root@master:~# ollama run llama3:8b
>>> hi
Hi! How's your day going so far? I'm here to chat and help with any questions or topics you'd like to discuss. What's on your mind?>>> Send a message (/? for help)

自定义模型

所谓自定义模型就是不适用Ollama官方模型库中的模型,理论可以使用其他各类经过转换处理的模型

从GGUF导入

Ollama支持在Modelfile文件中导入GGUF模型

创建一个名为 Modelfile的文件,其中包含一条FROM指令,其中包含要导入的模型的本地文件路径。

FROM ./Llama3-FP16.gguf

在Ollama中创建模型

ollama create llama3 -f Modelfile

运行模型

ollama run llama3 

完整执行日志如下:

root@master:~/work# touch Modelfile
root@master:~/work# mv /root/work/jupyterlab/models/Llama3-FP16.gguf ./
root@master:~/work# ollama create llama3 -f Modelfile
transferring model data 
using existing layer sha256:547c95542e3fa5cc232295ea3cbd49fc14b4f4489ca9b465617076c1f55d4526 
creating new layer sha256:81834e074ec2a24086bdbf16c3ba70eb185f5883cde6495e95f5141e4d325456 
writing manifest 
success
root@master:~/work# ollama run llama3
>>> Send a message (/? for help)

自定义提示

Ollama库中的模型可以通过提示进行自定义。

FROM llama3# 设置温度参数
PARAMETER temperature 1# 设置SYSTEM 消息
SYSTEM """
作为AI智能助手,你将竭尽所能为员工提供严谨和有帮助的答复。
"""

更多参数说明参考:Modelfile文档

从PyTorch或Safetensors导入

所谓从从PyTorch或Safetensors导入Ollama,其实就是使用llama.cpp项目,对PyTorch或Safetensors类型的模型进 行转换、量化处理成GGUF格式的模型,然后再用Ollama加载使用 。

上述从GGUF导入使用的模型:Llama3-FP16.gguf便是经过llama.cpp项目处理得到的。

llama.cpp的使用参考:使用llama.cpp实现LLM大模型的格式转换、量化、推理、部署

官方文档参考:导入模型指南

开启服务

运行模型后,执行ollama serve命令启动Ollama服务,然后就可以通过API形式进行模型调用

ollama serve会自动启动一个http服务,可以通过http请求模型服务

首次启动会自动生成ssh私钥文件,同时打印公钥内容。

root@master:/usr/local/docker# ollama serve
Couldn't find '/root/.ollama/id_ed25519'. Generating new private key.
Your new public key is: ssh-ed25519 AAAAC3NzaC1lZDI1NTE5ssssssxxxxxxxxxxjx3diFB3a5deoGLnT7gHXxjA6R2024/05/16 09:27:27 routes.go:1008: INFO server config env="map[OLLAMA_DEBUG:false OLLAMA_LLM_LIBRARY: OLLAMA_MAX_LOADED_MODELS:1 OLLAMA_MAX_QUEUE:512 OLLAMA_MAX_VRAM:0 OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:1 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost:* https://localhost:* http://127.0.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.0.1:* http://0.0.0.0 https://0.0.0.0 http://0.0.0.0:* https://0.0.0.0:*] OLLAMA_RUNNERS_DIR: OLLAMA_TMPDIR:]"
time=2024-05-16T09:27:27.635Z level=INFO source=images.go:704 msg="total blobs: 0"
time=2024-05-16T09:27:27.635Z level=INFO source=images.go:711 msg="total unused blobs removed: 0"
time=2024-05-16T09:27:27.635Z level=INFO source=routes.go:1054 msg="Listening on 127.0.0.1:11434 (version 0.1.38)"
time=2024-05-16T09:27:27.635Z level=INFO source=payload.go:30 msg="extracting embedded files" dir=/tmp/ollama4098813456/runners
time=2024-05-16T09:27:31.242Z level=INFO source=payload.go:44 msg="Dynamic LLM libraries [cpu cpu_avx cpu_avx2 cuda_v11 rocm_v60002]"
time=2024-05-16T09:27:31.401Z level=INFO source=types.go:71 msg="inference compute" id=GPU-4c974b93-cf0c-486e-9e6c-8f91bc02743c library=cuda compute=7.0 driver=12.2 name="Tesla V100S-PCIE-32GB" total="31.7 GiB" available="16.5 GiB"

在这里插入图片描述

REST API

更多、具体API,请参阅 API文档

1.生成回复

curl http://IP:11434/api/chat -d '{"model": "llama3:8b","messages": [{ "role": "user", "content": "你好啊" }]
}'

请求参数示例:

{"model": "llama3","prompt": "你好啊","stream": false
}

2.与模型聊天

curl http://IP:11434/api/chat -d '{"model": "llama3","messages": [{ "role": "user", "content": "你好啊" }]
}'

请求参数示例:

{"model": "llama3","messages": [{"role": "system","content": "你是一个乐于助人的AI助手。"},{"role": "user","content": "你好啊"}],"stream": false
}

卸载Ollama

停止并禁用服务

systemctl stop ollamasystemctl disable ollama

删除服务文件和Ollama二进制文件

rm /etc/systemd/system/ollama.service rm $(which ollama)

清理Ollama用户和组

rm -r /usr/share/ollamauserdel ollamagroupdel ollama

One-API

概述

One-API是一个OpenAI接口管理 & 分发系统,支持各类大模型。这里使用Docker快速进行部署。

GitHub:https://github.com/songquanpeng/one-api

拉取镜像

docker pull justsong/one-api

创建挂载目录

mkdir -p /usr/local/docker/oneapi

启动容器

docker run --name one-api -d --restart always -p 3001:3000 -e TZ=Asia/Shanghai -v /usr/local/docker/oneapi:/data justsong/one-api

访问IP:3001

初始账号用户名为 root,密码为 123456

在这里插入图片描述

One-API管理本地模型

在创建渠道时选择Ollama,然后手工填上自己要使用的模型,密钥任意,最重要的是后面在代理中写上自己ollama服务的地址即可 在这里插入图片描述 测试成功后,在各类OpenAI套壳软件中,通过配置类似于OpenAI的密钥、API地址等参数,就可以象使用OpenAI一样。 在这里插入图片描述

Open WebUI

概述

Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 WebUI,旨在完全离线操作。它支持各种 LLM 运行程序,包括 Ollama 和 OpenAI 兼容的 API。

GitHub:https://github.com/open-webui/open-webui

Open WebUI:https://docs.openwebui.com/

Open WebUI社区: https://openwebui.com/

Docker部署

使用Docker快速安装部署Open WebUI,需要注意:确保在Docker命令中包含-v open-webui:/app/backend/data。因为它确保数据库正确安装并防止任何数据丢失。

使用Docker进行Open WebUI安装部署,根据场景不同,可分为以下几类:

1.默认配置安装,如果计算机上有Ollama,请使用以下命令:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:maindocker run -d -p 3000:8080  -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

2.Ollama位于不同的服务器上,连接到另一台服务器上的 Ollama,请将OLLAMA_BASE_URL更改为服务器的URL:

docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

3.要运行支持Nvidia GPU的Open WebUI,请使用以下命令:

docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda

4.安装带有捆绑Ollama支持的Open WebUI

使用GPU支持:通过运行以下命令来利用GPU资源:

docker run -d -p 3000:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama

仅适用于CPU:如果不使用GPU,请改用以下命令:

docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama

Open WebUI配置

访问http://IP:3000,创建一个账号(管理员) 在这里插入图片描述 进入Open WebUI后,界面如下。在Settings中进行相关设置。 在这里插入图片描述 设置语言 在这里插入图片描述 设置Ollama的访问地址 在这里插入图片描述 选择模型,开始聊天。 在这里插入图片描述

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述


http://www.mrgr.cn/news/64099.html

相关文章:

  • 网易博客旧文----开发常用工具和软件列表
  • 代理IPv6知识分享课堂二
  • 树叶分类竞赛(Baseline)以及kaggle的GPU使用
  • 在工作中常用到的 Linux 命令总结
  • [c语言]strcpy函数的使用和模拟实现
  • django请求与响应
  • static全局/局部变量/函数和普通全局/局部变量/函数的区别
  • 赋值语句@赋值表达式@便于阅读和便于理解的比较
  • 【Linux中的第一个小程序】进度条及printf打印彩色字符
  • 《Python修炼秘籍》01踏上编程之旅
  • 满秩分解与奇异值分解
  • 机器人大模型GR2——在大规模视频数据集上预训练且机器人数据上微调,随后预测动作轨迹和视频(含GR1详解)
  • 树的遍历(先,中,后)
  • 【无人机设计与控制】改进无人机三维路径规划(蜣螂优化算法)Matlab程序
  • 除甲醛开窗通风的正确方法 消除甲醛的最好方法
  • 如何引用一个已经定义过的全局变量?
  • 【含文档】基于ssm+jsp的智慧篮球馆预约(含源码+数据库+lw)
  • 【含文档】基于Springboot+Vue的工商局商家管理系统 (含源码数据库+LW)
  • 基于javaweb(springboot+mybatis)网站建设服务管理系统设计和实现以及文档报告设计
  • ssm毕业设计选题系统+jsp
  • HTML 基础标签——表格标签<table>
  • cangjie仓颉程序设计-怎么排序(二)
  • 从头开始学PHP之面向对象
  • 2025生物发酵展(济南)为生物制造产业注入新活力共谱行业新篇章
  • 仓颉刷题录-二维数组(二)
  • 第15届蓝桥杯省赛真题剖析-2024年8月24日Scratch中级组